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This appendix contains four sections, described as follows:

(I) In the context of example 2, we show how to compute B̄, how to construct functions
f b and Γ, and that all assumptions introduced in subsections 4.1.2 and 4.1.3 are satisfied
under reasonable parameter restrictions.
(II) We show that the spendthrift policy is an equilibrium outcome.
(III) We study the properties of the policy gN that maximizes the net gain from coopera-
tion, NGC(g).
(IV) We characterize a set of static equilibrium outcomes and study how it changes with
n and BL.

We follow the numbering scheme of equations, propositions, lemmas, etc. of the main
body of the paper.



I The value B̄, functions f b and Γ, and assumptions

from subsections 4.1.2 and 4.1.3 under example 2

We show here how to compute B̄ and construct the functions f b and Γ in the context of
example 2. We also show that all assumptions introduced in subsections 4.1.2 and 4.1.3
are satisfied in the context of that example provided that the relevant parameters satisfy
some reasonable restrictions.

Computing the maximum level of debt B̄. Let Bs denote the maximum value that b
can assume in a steady state. Clearly, Bs ≤ B̄. On the other hand, B̄ has to be attainable
in a steady state; thus, B̄ ≤ Bs. We conclude that B̄ = Bs. Therefore, to find B̄ it is
enough to find the maximum attainable steady-state value of b. In such a context, b = b′.
Hence, (20) becomes

b =
1

1− β
(τ l − g).

To evaluate B̄, it is enough to select an attainable vector (τ , g) to maximize (τ l − g). Let
us carry out this task for the preferences in example 2. Given that l satisfies (9), we have
to set g equal to its minimum value γ. We should set τ equal to the upper bound τ̄ . As a
consequence,

B̄ =
1

1− β

(

τ̄
a1

a1 + a2
− γ

)

.

Functions f b and Γ, constraints (25) and (26), and inequality (27). We start with
the construction of function f b. Combine (20) with (9) to obtain

bt+1 = β−1

(

bt + gt − τ t
a1

a1 + a2

)

≥ β−1

(

bt + γ − τ̄
a1

a1 + a2

)

.

Now, define f b according to

f b(bt) ≡ β−1

(

bt + γ − τ̄
a1

a1 + a2

)

. (54)

It is a straightforward exercise to show that f b(B̄) = B̄. Moreover, the definition of f b

implies that bt+1 ≥ f b(bt), while the definition of B̄ implies that bt+1 ≤ B̄. Therefore, (25)
is satisfied.
Consider now Γ and (26). Again, combine (20) with (9). This procedure leads to

gt = τ t
a1

a1 + a2
+ βbt+1 − bt ≤ τ̄

a1
a1 + a2

+ βbt+1 − bt.

Therefore,

Γ(bt, bt+1) ≡ τ̄
a1

a1 + a2
+ βbt+1 − bt. (55)

Note that Γ(B̄, B̄) = γ. Since gt ≥ γ and gt ≤ Γ(bt, bt+1), (26) holds.
Given that Γb = −1 and Γb′ = β, Γb(b, b) + Γb′(b, b) = −1 + β < 0. Hence, inequality

(27) is satisfied.
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Inequalities (30), (31), and (32). As pointed out in the discussion of example 2,

a1 − (a1 + a2)(g + b− βb′) > 0.

Now, differentiate (37) and use the above inequality to conclude that

Ub(b, g, b
′) = −

a1(a1 + a2)

a1 − (a1 + a2)(g + b− βb′)
< 0, (56)

Ug(b, g, b
′) = −

a1(a1 + a2)

a1 − (a1 + a2)(g + b− βb′)
+

a3
g
, (57)

Ub′(b, g, b
′) =

βa1(a1 + a2)

a1 − (a1 + a2)(g + b− βb′)
> 0, (58)

Ugg(b, g, b
′) = −

{

a1(a1 + a2)
2

[a1 − (a1 + a2)(g + b− βb′)]2
+

a3
g2

}

< 0, (59)

Ubg(b, g, b
′) = −

a1(a1 + a2)
2

[a1 − (a1 + a2)(g + b− βb′)]2
< 0, (60)

Ugb′(b, g, b
′) =

βa1(a1 + a2)
2

[a1 − (a1 + a2)(g + b− βb′)]2
> 0, (61)

and

Ubg(b, g, b) + Ugb′(b, g, b) = −
(1− β)a1(a1 + a2)

2

{a1 − (a1 + a2)[g + (1− β)b]}2
< 0.

Hence, all inequalities in (30), (31) and (32) are satisfied in the context of example 2.

Condition (33). Let b and b̂ be two attainable debt levels satisfying b < b̂. Combine (56)
with (58) to conclude that Ub(b, g, b) + Ub′(b, g, b) < 0. Apply this result to conclude that
U(b̂, g∗(b̂, b̂), b̂) < U(b, g∗(b̂, b̂), b). On the other hand, U(b, g∗(b̂, b̂), b) ≤ U(b, g∗ (b, b) , b).
Combine the last two inequalities to obtain the desired result.

Condition (34). First, let us introduce two conditions. Inequalities

τ̄ >
a3

a1 + a3
(62)

and
γ < (1− τ̄)

a3
a1 + a2

(63)

ensure that the maximum tax rate τ̄ is not too small and that γ is not too large.
Clearly, there is nothing to show if g∗(b, b′) = Γ(b, b′). Hence, assume that g∗(b, b′) <

Γ(b, b′). Let gu(b, b′) be the unconstrained maximizer of U(b, g, b′). If gu(b, b′) > γ, then
g∗(b, b′) = gu(b, b′) and we have the desired result. Thus, we conclude by showing that if
gu(b, b′) ≤ γ, then (63) is violated.
By setting the partial derivative in (57) equal to zero, we conclude that

gu(b, b′) =
a3

a1 + a3

(

a1
a1 + a2

+ βb′ − b

)

. (64)
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Therefore,

γ ≥ gu(b, b′) ⇒ γ ≥
a3

a1 + a3

a1
a1 + a2

+
a3

a1 + a3
(βb′ − b). (65)

Now, combine the fact that b′ ≥ f b(b) and (54) to conclude that

βb′ − b ≥ γ − τ̄
a1

a1 + a2
.

Together with (65), the last inequality implies that

γ ≥
a3

a1 + a3

a1
a1 + a2

+
a3

a1 + a3

(

γ − τ̄
a1

a1 + a2

)

.

Reorganizing this inequality, we obtain

γ ≥ (1− τ̄ )
a3

a1 + a2
.

Inequality (35). Combine (55), (62), and (64) to conclude that

gu(0, 0) =
a3

a1 + a3

a1
a1 + a2

< τ̄
a1

a1 + a2
= Γ(0, 0).

Thus, it remains to show that g∗(0, 0) = gu(0, 0). Given that gu(0, 0) < Γ(0, 0), the last
equality will hold if gu(0, 0) > γ. Now, observe that (62) implies that

1− τ̄ < 1−
a3

a1 + a3
=

a1
a1 + a3

.

Combine this result with (63). This yields

γ <
a1

a1 + a3

a3
a1 + a2

= gu(0, 0).

II The spendthrift equilibrium

We state in the main body of the paper that the spendthrift policy is a symmetric political
equilibrium if conditions (C1) and (C2) are satisfied. In this section we prove that assertion.
We first discuss it in an intuitive way in subsection II.1. A formal argument is presented
in subsection II.2. That argument relies on some properties of the partial derivatives of
the function G. We show in subsection II.3 that the properties in question are satisfied in
the context of example 2.

II.1 The underlying intuition

In this subsection we intuitively discuss why conditions (C1)-(C2) ensure that the spend-
thrift policy is an equilibrium outcome. Since λ measures politicians’ degree of profligacy,
it may appear that condition (C1) alone would be enough to ensure that the spendthrift
policy is an equilibrium outcome. However, this need not be true. The reason is that a
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high λ represents a penchant for rents today but also in the future, and setting b1 = B̄
would decrease future rents to their minimum level.44 It is then clear that some additional
requirement is needed to ensure that the spendthrift policy is an equilibrium outcome.
Condition (C2) does just that.
To see the role of condition (C2), take a policy {gt, bt+1}

∞

t=s with the property that
gt = G(bt, bt+1, λ). For simplicity, assume that the partial derivativesGb andGb′ are defined
at every point (b, b′, λ). Let t be any date and δ a small positive number. If bt+1 increases
by δ, gt will grow by approximately δGb′(bt, bt+1, λ) while gt+1 will fall by approximately
−δGb(bt+1, bt+2, λ). Note that Gb and Gb′ include possible endogenous changes in taxation
due to changes in gt. Hence, a policymaker can substitute gt for gt+1 at the rate

−
δGb′(bt, bt+1, λ)

δGb(bt+1, bt+2, λ)
= −

Gb′(bt, bt+1, λ)

Gb(bt+1, bt+2, λ)
.

In a symmetric outcome, the derivatives of the date-t incumbent’s payoff with respect
to gt and gt+1 are equal to, respectively, Ug(bt, gt, bt+1)+λ and β[Ug(bt+1, gt+1, bt+2)+λ/n].
Therefore,

−
dgt
dgt+1

= β
Ug(bt+1, gt+1, bt+2) + λ/n

Ug(bt, gt, bt+1) + λ
,

where −dgt/dgt+1 is a standard intertemporal marginal rate of substitution. Thus, the
date-t incumbent has an incentive to increase gt and to reduce gt+1 by issuing debt whenever

−
Gb′(bt, bt+1, λ)

Gb(bt+1, bt+2, λ)
> β

Ug(bt+1, gt+1, bt+2) + λ/n

Ug(bt, gt, bt+1) + λ
.

Now, in line with (C1), make λ → ∞. Since Ug is bounded, the right-hand side of the
inequality above converges to β/n. Hence, for λ sufficiently large, it becomes

−
Gb′(bt, bt+1, λ)

Gb(bt+1, bt+2, λ)
>

β

n
.

For this condition to hold for all n, we need that

−
Gb′(bt, bt+1, λ)

Gb(bt+1, bt+2, λ)
>

β

2
. (66)

Thus, if λ is large, the date-t incumbent will always have an incentive to issue debt and
increase gt if inequality (66) holds, which is precisely what condition (C2) ensures. In the
next subsection we provide a more general version of (66) that takes into consideration,
among other technical issues, that Gb and Gb′ may be undefined at some points (b, b

′, λ).
To better understand the nature of condition (66), consider that the economy is in

a steady state, so that bt = bt+1 for all t. In such a context, one can show that the
left-hand side of (66) would be equal to β and the inequality would be trivially satis-
fied. Thus, one can interpret inequality (66) as a condition that ensures that the ratio
Gb′(bt, bt+1, λ)/Gb(bt+1, bt+2, λ) does not deviate too much from its steady-state value.

44It is easy to see, for example, that a dictator would set gt = gD and bD
t+1 = 0 for every t, thus keeping

the public debt unchanged regardless of the value of λ.
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II.2 A formal argument

We establish here that the spendthrift policy is an equilibrium outcome if conditions (C1)
and (C2) are satisfied. We proceed in steps, since this is a long exercise. Those steps
consist of:

1. Proving that the function G is strictly decreasing in b, strictly increasing in b′, and
increasing in λ.

2. Showing that there exists a number λ1 that does not depend on (b, b′) with the
property that λ > λ1 ⇒ G(b, b′, λ) = Γ(b, b′) for every (b, b′).

3. Showing that the partial derivatives of G are bounded.

4. Establishing a technical condition that is similar but more general than the intuitive
constraint (66) of the previous subsection, which in turn corresponds to condition
(C2).

5. Characterizing the part of the expected payoff of the date-t incumbent that depends
on that player’s actions and showing that it is strictly increasing in bt+1 for every t
if (C1) holds (i.e., if λ is sufficiently large).

6. Showing that, under (C1) and (C2), an incumbent will always be willing to increase
the public debt until it reaches the upper bound B̄, and therefore the spendthrift
policy plan constitutes a symmetric political equilibrium.

Let us outline how each of these steps fits into our task. We do that in a reverse order.
Consider step 6, which is the last and most important one. It is carried out in Proposition
8. Step 5 consists of establishing Lemma 8, which is used in the proof of Proposition 8.
Step 4 consists of spelling out two conditions, namely (72) and (74), on the derivatives of
G. They are used in the proof of Lemma 8. Step 3 is formalized in Lemma 7, which in turn
is applied to prove Lemma 8. Step 2, used to obtain step 3, consists of establishing Lemma
6. Finally, step 1, employed to carry out the subsequent step, is formalized in Lemma 5.
We need to introduce some notation. We denote the solution of the unconstrained

version of (38) by Gu. That is, Gu(b, b′, λ) is the maximizer of U(b, g, b′) + λg. Since U
is strictly concave in g, condition (34) implies that Ug(b, γ, b

′) > 0 if Γ(b, b′) > γ. As a
consequence, if the last inequality holds, then Gu(b, b′, λ) > γ.

Lemma 5 The function G is strictly decreasing in b, strictly increasing in b′, and increas-
ing in λ.

Proof. Let Gu
b , G

u
b′ , and Gu

λ denote the partial derivatives of G
u. We adopt similar

notation for the partial derivatives of G and Γ. The differentiation of (40) when it holds
with equality establishes that

Gu
b = −

Ubg

Ugg
, Gu

b′ = −
Ugb′

Ugg
and Gu

λ = −
1

Ugg
. (67)

Recall that Ugg < 0. Therefore, Gu
λ(b, b

′, λ) > 0. Then, combine the former inequality with
(31) to conclude that Gu

b (b, b
′, λ) < 0 and Gu

b′(b, b
′, λ) > 0.
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The function G may fail to be differentiable exactly when Gu(b, b′, λ) = Γ(b, b′). How-
ever, G is differentiable wheneverGu(b, b′, λ) 
= Γ(b, b′). Suppose thatGu(b, b′, λ) < Γ(b, b′);
thus, G(b, b′, λ) = Gu(b, b′, λ) and Gb = Gu

b < 0, Gb′ = Gu
b′ > 0, and Gλ = Gu

λ > 0.
If Gu(b, b′, λ) > Γ(b, b′), then G(b, b′, λ) = Γ(b, b′); as a consequence, Gb = Γb < 0,
Gb′ = Γb′ > 0, and Gλ = f g

λ = 0.
Let G−

b and G+
b denote, respectively, the left and right derivatives of G with respect to

b. We use analogous notation for the side derivatives with respect to b′ and λ. It should
be clear from the previous paragraph that G−

b is equal to Gu
b or Γb. Similarly, G

+
b = Gu

b

or G+
b = Γb. The same reasoning applies to the side derivatives with respect to b′ and λ.

Therefore,
G−

b < 0, G+
b < 0, G−

b′ > 0, G+
b′ > 0, G−

λ ≥ 0, and G+
λ ≥ 0.

Even if G is not differentiable when Gu(b, b′, λ) = Γ(b, b′), the inequalities above allow us
to conclude that G is strictly decreasing in b, strictly increasing in b′ and increasing in λ.
Consider the variable b. At a point where Gb is not defined, both the left G

−

b and the right
G+

b partial derivatives are negative. Since G is continuous, we can be sure that its value
decreases as b increases. Analogous reasoning applies to b′ and λ.

Lemma 6 There exists a number λ1 that does not depend on (b, b′) with the property that,
if λ > λ1, then G(b, b′, λ) = Γ(b, b′) for every (b, b′).

Proof. The definition of Gu implies that Ug(B̄, Gu(B̄,−B, λ),−B) = −λ. Therefore,
limλ→∞ Ug(B̄, Gu(B̄,−B, λ),−B) = −∞. Recall the definition of Γ̄ from the proof of
lemma 5 in the appendix of the main text. Since Ug(B̄, Γ̄,−B) > −∞, then there must
exist a number λ1 with the property that, if λ > λ1, then

Γ̄ ≤ Gu(B̄,−B, λ). (68)

Now, observe that both b and b′ belong to [−B, B̄]. Hence, b ≤ B̄ and b′ ≥ −B. Use
the fact that Gu

b < 0 and Gu
b′ > 0 to conclude that

Gu(B̄,−B, λ) ≤ Gu(b, b′, λ)

for every (b, b′). Combine the last inequality with (68) to conclude that if λ > λ1, then
Γ̄ ≤ Gu(b, b′, λ) for every (b, b′). However, Γ(b, b′) ≤ Γ̄. Hence, Gu(b, b′, λ) ≥ Γ(b, b′)
whenever λ > λ1. Thus, G(b, b′, λ) = Γ(b, b′) for every λ > λ1.

Our next step consists of showing that some of the partial derivatives of G are bounded.
Taking into account that Gb may be undefined at some points, we need to establish that

sup
(b,b′,λ)

[

max{|G−

b (b, b
′, λ)|, |G+

b (b, b
′, λ)|}

]

< ∞. (69)

Observe that if Gb is defined everywhere, then G−

b = G+
b and (69) is equivalent to

sup(b,b′,λ) |Gb(b, b
′, λ)| < ∞. In a similar fashion, we have to prove that

sup
(b,b′,λ)

[

max{|G−

b′(b, b
′, λ)|, |G+

b′(b, b
′, λ)|}

]

< ∞. (70)

Lemma 7 The partial derivatives of G satisfy (69) and (70).
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Proof. Since (b, b′) ∈ [−B, B̄] × [−B, B̄], we can conclude that sup(b,b′) |Γb(b, b
′)| < ∞.

Now, take any λ larger than λ1. Lemma 6 implies that Gb is well defined and equal to Γb.
Therefore, (69) holds if we impose the extra condition that λ > λ1. If λ ≤ λ1, then (b, b

′, λ)
lies in a compact set; hence, sup(b,b′,λ) |G

u
b (b, b

′, λ)| < ∞. Moreover, G−

b is equal to Gu
b or

Γb; the same applies to G
+
b . Thus, both G−

b and G+
b are bounded for λ ≤ λ1. Hence, (69)

holds if we impose the extra condition that λ ≤ λ1. Since (69) holds for λ > λ1 and λ ≤ λ1,
it clearly holds if we do not place any constraint on λ. Similar reasoning establishes that
(70) holds.

We now lay out a technical condition that is equivalent to the intuitive constraint (66)
on the partial derivatives of Gb and Gb′. For a moment, assume that those derivatives are
well defined. Use the fact that Gb < 0 to rewrite (66) as

Gb′(b, b
′, λ)−

β

2
|Gb(b

′, b′′, λ)| > 0,

where b′′ denotes the public debt two dates ahead. For technical reasons, we need the
left-hand side of that inequality to be bounded away from zero. That is,

Gb′(b, b
′, λ)−

β

2
|Gb(b

′, b′′, λ)| ≥ ε

for some positive ε. After we take into consideration that Gb and Gb′ may be undefined at
some points, the last inequality has to be replaced by

G−

b′(b, b
′, λ)−

β

2
|G−

b (b
′, b′′, λ)| ≥ ε (71)

and

G+
b′(b, b

′, λ)−
β

2
|G+

b (b
′, b′′, λ)| ≥ ε. (72)

For our purposes, it is possible to replace inequalities (71) and (72) with two much
weaker conditions. It suffices to assume that there exist numbers λ̃0 > 1, ε > 0 and
η ∈ [0, 1) such that, if λ ≥ λ̃0, then

G−

b′(b, b
′, λ)−

β

2
|G−

b (b
′, b′′, λ)| ≥ ε/λη (73)

and

G+
b′(b, b

′, λ)−
β

2
|G+

b (b
′, b′′, λ)| ≥ ε/λη (74)

for every (b, b′, b′′). Observe that the left-hand side of (71) is bounded away from zero,
while the left-hand side of (73) may fall to zero as λ goes to ∞, provided that such a
decline does not happen too fast. A similar remark applies to (72) and (74).
Our next step consists of characterizing the part of the expected payoff of the date-

t incumbent that depends on that player’s actions. Given that each incumbent faces a
problem similar to the ones faced by its predecessors and successors, it suffices to carry
out that task for party p0 when the initial public debt assumes a generic value b0.
Let Ωp0 denote the expected payoff of the date-zero incumbent and ωp0 be the part of

Ωp0 that depends on that player’s actions. We define ωp0,t as the undiscounted date-t part of
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ωp0. Thus, ωp0 =
∑

∞

t=0 β
tωp0,t. To assess ωp0, we evaluate each of the factors ωp0,t. At date

zero, party p0 chooses b1 and its date-zero period payoff is equal to U(b0, G(b0, b1, λ), b1) +
λG(b0, b1, λ). Hence, ωp0,0 is equal to that expression.
With respect to date 1, if the date-zero incumbent p0 were again in office, then its

period payoff would be U(b1, G(b1, b2, λ), b2) + λG(b1, b2, λ); otherwise, the party in office
would leave the debt at B̄ and the period payoff of party p0 would be U(b1, G(b1, B̄, λ), B̄).
Hence,

ωp0,1 =
1

n
[U(b1, G(b1, b2, λ), b2) + λG(b1, b2, λ)] +

n− 1

n
U(b1, G(b1, B̄, λ), B̄).

At date 2, suppose that p0 were in office at date 1. If it were again in office at t = 2,
then its payoff would be U(b2, G(b2, b3, λ), b3) + λG(b2, b3, λ); otherwise, its period payoff
would be U(b2, G(b2, B̄, λ), B̄). Hence, the term

1

n

{

1

n
[U(b2, G(b2, b3, λ), b3) + λG(b2, b3, λ)] +

n− 1

n
U(b2, G(b2, B̄, λ), B̄)

}

(75)

must be a component of ωp0,2. Suppose now that party p0 were not in office at date 1; its
period payoff would be U(B̄,G(B̄, B̄, λ), B̄)+λG(B̄, B̄, λ) if it were in office at date 2 and
U(B̄,G(B̄, B̄, λ), B̄) otherwise. Since these last expressions do not depend on the choices
of party p0, we conclude that ωp0,2 is equal to the expression in (75).
We now apply this reasoning to a generic date t ≥ 2. Suppose that p0 were in office

at all previous dates. If it were again in office, then its period payoff would be equal to
U(bt, G(bt, bt+1, λ), bt+1) + λG(bt, bt+1, λ); otherwise, its period payoff would be equal to
U(bt, G(bt, B̄, λ), B̄). If p0 were not in office on at least one of the previous dates, then its
period payoff would be U(B̄, G(B̄, B̄, λ), B̄)+λG(B̄, B̄, λ) if it were in office at date t and
U(B̄,G(B̄, B̄, λ), B̄) otherwise. Therefore,

ωp0,t =

(

1

n

)t−1{
1

n
[U(bt, G(bt, bt+1, λ), bt+1)+ (76)

λG(bt, bt+1, λ)] +
n− 1

n
U(bt, G(bt, B̄, λ), B̄)

}

.

We conclude that

ωp0 = U(b0, G(b0, b1, λ), b1) + λG(b0, b1, λ) (77)

β

{

1

n
[U(b1, G(b1, b2, λ), b2) + λG(b1, b2, λ)]+

n− 1

n
U(b1, G(b1, B̄, λ), B̄)

}

+
∞
∑

t=2

βtωp0,t.

For future reference, we point out that
∑

∞

t=2 β
tωp0,t does not depend on b1.

Lemma 8 Suppose that (73) and (74) hold. Then, there exists a real number λ̃ with the
property that, if λ ≥ λ̃, then ωp0 is strictly increasing in bt+1 for every t.
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Proof. Let
∂ωp0

∂b−
1

and
∂ωp0

∂b+
1

denote the left- and right-side partial derivatives of ωp0 with

respect to b1. Hence,

∂ωp0

∂b−1
= Ub′(b0, G(b0, b1, λ), b1) + Ug(b0, G(b0, b1, λ), b1)G

−

b′(b0, b1, λ) +

λG−

b′(b0, b1, λ) + β
1

n
[Ub(b1, G(b1, b2, λ), b2) + (78)

Ug(b1, G(b1, b2, λ), b2)G
−

b (b1, b2, λ) + λG−

b (b1, b2, λ)] +

β
n− 1

n
[Ub(b1, G(b1, B̄, λ), B̄) + Ug(b1, G(b1, B̄, λ), B̄)G−

b (b1, B̄, λ)].

Use the fact that G−

b ≤ 0 and Ub′ ≥ 0 to conclude that

∂ωp0

∂b−1
≥ Ug(b0, G(b0, b1, λ), b1)G

−

b′(b0, b1, λ) +

β
1

n
Ub(b1, G(b1, b2, λ), b2) + β

n− 1

n
Ub(b1, G(b1, B̄, λ), B̄) +

β
1

n
Ug(b1, G(b1, b2, λ), b2)G

−

b (b1, b2, λ) +

β
n− 1

n
Ug(b1, G(b1, B̄, λ), B̄)G−

b (b1, B̄, λ) +

λ

[

G−

b′(b0, b1, λ)− β
1

n
|G−

b (b1, b2, λ)|

]

.

Now, observe that Ugg ≤ 0, G−

b′ ≥ 0, Ubg ≤ 0. Therefore,

∂ωp0

∂b−1
≥ Ug(b0, Γ̄, b1)G

−

b′(b0, b1, λ) +

β

{

1

n
Ub(b1, Γ̄, b2) +

n− 1

n
Ub(b1, Γ̄, B̄)

}

+

β

{

1

n
Ug(b1, γ, b2)G

−

b (b1, b2, λ) +
n− 1

n
Ug(b1, γ, B̄)G−

b (b1, B̄, λ)

}

+

λ

[

G−

b′(b0, b1, λ)− β
1

n
|G−

b (b1, b2, λ)|

]

.

The last expression implies that

∂ωp0

∂b−1
≥

[

min
(b,b′)

Ug(b, Γ̄, b
′)

]

G−

b′(b0, b1, λ) + βmin
(b,b′)

Ub(b, Γ̄, b
′)+

β

{

1

n

[

max
(b,b′)

Ug(b, γ, b
′)

]

G−

b (b1, b2, λ) +
n− 1

n

[

max
(b,b′)

Ug(b, γ, b
′)

]

G−

b (b1, B̄, λ)

}

+

λ

[

G−

b′(b0, b1, λ)− β
1

n
|G−

b (b1, b2, λ)|

]

> −∞.
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Since n ≥ 2, Ug(b, Γ̄, b
′) < 0, G−

b′ ≥ 0, and Ug(b, γ, b
′) > 0, we have

∂ωp0

∂b−1
≥ A− + λ

[

G−

b′(b0, b1, λ)− β
1

2
|G−

b (b1, b2, λ)|

]

, (79)

where

A− =

[

min
(b,b′)

Ug(b, Γ̄, b
′)

]

[

sup
(b,b′,λ)

G−

b′(b, b
′, λ)

]

+ βmin
(b,b′)

Ub(b, Γ̄, b
′)− (80)

β

[

max
(b,b′)

Ug(b, γ, b
′)

]

[

sup
(b,b′,λ)

|G−

b (b, b
′, λ)|

]

.

Now use the fact that b and b′ belong to [−B, B̄] and that the partial derivatives of U
are continuous to conclude that min(b,b′)Ug(b, Γ̄, b

′) > −∞, min(b,b′)Ub(b, Γ̄, b
′) > −∞, and

max(b,b′) Ug(b, γ, b
′) < ∞. Therefore, (69) and (70) imply that A− > −∞.

Combine (79) with (73) to conclude that if λ > λ̃0, then

∂ωp0

∂b−1
≥ A− + λ1−ηε > −∞.

Similar reasoning establishes

∂ωp0

∂b+1
≥ A+ + λ1−ηε > −∞,

where A+ is defined exactly as A−, except that G+
b′ and G+

b replace their left-sided coun-

terparts in (80). Thus, there exists a number λ̃ ≥ λ̃0 with the property that if λ > λ̃, then
∂ωp0

∂b−
1

> 0 and
∂ωp0

∂b+
1

> 0. Since ωp0 is a continuous function of b1, we conclude that ωp0 is

strictly increasing in b1.
We still have to show that ωp0 is strictly increasing in bt+1 for a generic date t. From

(77) we conclude that
∂ωp0

∂b−t+1

= βt∂ωp0,t

∂b−t+1

+ βt+1∂ωp0,t+1

∂b−t+1

.

Combine this expression with (76) to obtain

∂ωp0

∂b−t+1

=

(

β

n

)t

[Ub′(bt, G(bt, bt+1, λ), bt+1) + Ug(bt, G(bt, bt+1, λ), bt+1)G
−

b′(bt, bt+1, λ)+

λG−

b′(bt, bt+1, λ)] +

(

β

n

)t{

β
1

n
[Ub(bt+1, G(bt+1, bt+2, λ), bt+2)+

Ug(bt+1, G(bt+1, bt+2, λ), bt+2)G
−

b (bt+1, bt+2, λ) + λG−

b (bt+1, bt+2, λ)]+

β
n− 1

n
[Ub(bt+1, G(bt+1, B̄, λ), B̄) + Ug(bt+1, G(bt+1, B̄, λ), B̄)G−

b (bt+1, B̄, λ)]

}

.
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If we follow the reasoning used after obtaining equality (78), we conclude that

∂ωp0

∂b−t+1

≥

(

β

n

)t

(A− + λ1−ηε) > −∞

and
∂ωp0

∂b+t+1

≥

(

β

n

)t

(A+ + λ1−ηε) > −∞.

Hence,
∂ωp0

∂b−t+1

> 0 and
∂ωp0

∂b+t+1

> 0 for λ > λ̃. An appeal to continuity establishes that ωp0 is

strictly increasing in bt+1.

We can now finally establish the main result of this section.

Proposition 8 Suppose that (73) and (74) hold. If λ ≥ λ̃, then the spendthrift policy plan
{σ̃t}

∞

t=0 is a symmetric political equilibrium.

Proof. Let t be any date. We have to show that if party pt believes that the other parties
follow the strategy {σ̃s}

∞

s=0, then {σ̃s}
∞

s=0 is an optimal choice for pt. It is enough to
consider the situation of party p0 when the initial public debt has a generic value b0. The
problem of party p0 consists of selecting a sequence {bt+1}

∞

t=0 that maximizes ωp0 subject
to

bt+1 ≤ B̄, (81)

f b(bt) ≤ bt+1. (82)

Let {b̂t+1}
∞

t=0 be any sequence that satisfies (81) and (82) with the property that b̂1 < B̄.
We will show that such a sequence cannot solve the problem of party p0 by constructing a
sequence {bt+1}

∞

t=0 that satisfies these constraints and yields a higher payoff.
Let b1 be any debt level that satisfies b̂1 < b1 ≤ B̄. Define the debt level at the other

dates recursively according to

bt+1 = max{f b(bt), b̂t+1} (83)

Therefore, {bt+1}
∞

t=0 satisfies (82).
We next show that {bt+1}

∞

t=0 satisfies (81). Recall that f
b is strictly increasing and

f b(B̄) = B̄. Thus, the inequality b1 ≤ B̄ implies that f b(b1) ≤ f b(B̄) = B̄. Since b̂2 ≤ B̄,
we conclude that max{f b(b1), b̂2} ≤ B̄. Thus, b2 ≤ B̄. Apply this reasoning recursively to
conclude that {bt+1}

∞

t=0 satisfies (81).
To conclude the proof, observe that (83) implies that bt+1 ≥ b̂t+1. Therefore, an appeal

to Lemma 8 establishes that {bt+1}
∞

t=0 yields a higher payoff than {b̂t+1}
∞

t=0. Hence, the
optimal action for party p0 entails setting b1 equals to B̄. Therefore, {σ̃t}

∞

t=0 is an optimal
strategy for the date-zero incumbent.

II.3 The assumptions about the derivatives of G

In this subsection we show that the assumptions on the partial derivatives of the function
G introduced in (66), (71), (72), (73) and (74) are satisfied in the context of example 2.
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We start by pointing out that the analysis can be restricted to (71) and (72). Indeed,
if the first of these two conditions holds, then so does (73). To verify that, it is enough to
set η = 0 in (73). Similarly, (74) holds whenever (72) is satisfied.
Concerning (66), recall that it was used only to argue in an intuitive way that the

spendthrift policy is an equilibrium outcome. As discussed in the previous subsection of this
online appendix, a formal analysis of the spendthrift equilibrium requires that we replace
the two partial derivatives Gb′ andGb in inequality (66) by their left and right counterparts:
−G−

b′(b, b
′, λ)/G−

b (b
′, b′′, λ) > β/2 and −G+

b′(b, b
′, λ)/G+

b (b
′, b′′, λ) > β/2. Suppose that (71)

holds. Thus,

−
G−

b′(b, b
′, λ)

G−

b (b
′, b′′, λ)

=
G−

b′(b, b
′, λ)

|G−

b (b
′, b′′, λ)|

≥
ε

|G−

b (b
′, b′′, λ)|

+
β

2
>

β

2
.

A similar argument establishes that −G+
b′(b, b

′, λ)/G+
b (b

′, b′′, λ) > β/2 if (72) holds.
Our task from now on is to show that both (71) and (72) are satisfied. To achieve this

goal, it suffices to introduce just one of the following two assumptions:

λ ≥
a1 + a2
1− τ̄

(84)

or
a1 < a3. (85)

Next we show that each of them implies that both (71) and (72) hold and, as a consequence,
so do the left and right counterparts of (66).

The sufficiency of inequality (84). If (84) holds, then G(b, b′, λ) = Γ(b, b′) for all (b, b′).
That is, λ is sufficiently large so that the maximization of V (b, g, b′) will always lead to a
corner solution. To verify that, observe that

Vg(b,Γ(b, b
′), b′) = Ug(b,Γ(b, b

′), b′) + λ = −
a1 + a2
1− τ̄

+
a3

Γ(b, b′)
+ λ.

Now use the fact that a3/Γ(b, b
′) > 0 to conclude that

Vg(b,Γ(b, b
′), b′) > −

a1 + a2
1− τ̄

+ λ.

Thus, (84) implies that Vg(b,Γ(b, b
′), b′) > 0. Given that Vgg < 0, G(b, b′, λ) = Γ(b, b′).

Since Γ is differentiable, in such a context both (71) and (72) are equivalent to

Γb′(b, b
′)−

β

2
|Γb(b

′, b′′)| ≥ ε. (86)

Therefore, our task consists of finding such a positive ε. However, Γb′ = β and Γb = −1.
Thus, the left-hand side of (86) is equal to β/2. Hence, it is enough to set ε = β/2.

The sufficiency of inequality (85). Since we are not assuming that (84) holds, it is
not possible to be sure that G(b, b′, λ) is a corner solution. Thus, we must also take into
consideration the case in which V has an interior optimum.
Recall that Gu denotes the unconstrained maximizer of V . Therefore, G(b, b′, λ) is
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equal to Γ(b, b′) or Gu(b, b′, λ). The function G may fail to be differentiable exactly when
Γ(b, b′) = Gu(b, b′, λ); however, these two last functions are differentiable. Hence, G−

b must
be equal to Γb or G

u
b ; the same is true for G

+
b . Similarly, both G+

b and G+
b′ must be equal

to Γb′ or G
u
b′ . Thus, to show that both (71) and (72) hold, it suffices to find a positive ε

with the property that (86),

Γb′(b, b
′)−

β

2
|Gu

b (b
′, b′′, λ)| ≥ ε, (87)

Gu
b′(b, b

′, λ)−
β

2
|Γb(b

′, b′′)| ≥ ε, (88)

and

Gu
b′(b, b

′, λ)−
β

2
|Gu

b (b
′, b′′, λ)| ≥ ε (89)

are satisfied for all attainable (b, b′, b′′) and all λ. We deal with each of those four inequalities
separately.
We first consider inequality (86). Define ε1 ≡ β/2. Given the analysis carried out in

the previous subsection, it is clear that Γb′ −
β
2
|Γb| ≥ ε1. Hence, (86) is satisfied for any

positive ε ≤ ε1.
To study inequalities (87), (88) and (89), we need to evaluate the partial derivatives of

Gu. We do so by using the implicit derivatives in (67), as well as some of the derivatives
in (56)-(61). For future reference, observe that

0 <
Ubg(b, g, b

′)

Ugg(b, g, b′)
=

1

1− 1
Ubg(b,g,b′)

a3
g2

< 1, (90)

where the equality is obtained by combining (59) and (60) and the inequalities follow from
the fact that Ugg < 0 and Ubg < 0.
We now turn our attention to inequality (87). Since Γb′ = β, we can use (67) and (90)

to conclude that

Γb′(b, b
′)−

β

2
|Gu

b (b
′, b′′, λ)| = β −

β

2

1

1− 1
Ubg(b,g,b′)

a3
g2

> β −
β

2
=

β

2
.

Therefore, it suffices to take any positive ε ≤ ε1.
To analyze the remaining two inequalities, we will use the fact that

Gu
b′(b, b

′, λ) > β
a3

a1 + a3
. (91)

To show that the last inequality is true, we first show that the ratio Ubg/Ugg is strictly
increasing in g. Define m2(m1) ≡ (1 +m1)

−1 and

m1(b, g, b
′) ≡ −

1

Ubg(b, g, b′)

a3
g2
.
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Thus,

∂m1

∂g
= a3

2Ubgg +
∂Ubg

∂g
g2

(Ubgg2)2
. (92)

Together, (56) and (60) lead to

Ubg = −
1

a1
(Ub)

2 ⇒
∂Ubg

∂g
= −

2

a1
UbUbg.

Combine the last equality with (92) to conclude that

∂m1

∂g
= a3

2Ubgg −
2
a1
UbUbgg

2

(Ubgg2)2
.

Since Ub < 0 and Ubg < 0, we conclude that ∂m1

∂g
< 0. Finally, we use the facts that dm2

dm1
< 0

and
∂(Ubg/Ugg)

∂g
= dm2

dm1

∂m1

∂g
to establish that

∂(Ubg/Ugg)

∂g
> 0.

Now recall that gu(b, b′) is the unconstrained maximizer of U(b, g, b′). Since gu(b, b′) <
Gu(b, b′, λ),

β
Ubg(b, G

u(b, b′, λ), b′)

Ugg(b, Gu(b, b′, λ), b′)
> β

Ubg(b, g
u(b, b′), b′)

Ugg(b, gu(b, b′), b′)
.

From (60) and (61), −Ugb′ = βUbg. Hence,

−
Ugb′(b, G

u(b, b′, λ), b′)

Ugg(b, Gu(b, b′, λ), b′)
> −

Ugb′(b, g
u(b, b′), b′)

Ugg(b, gu(b, b′), b′)
.

Combine this result with (67) to conclude that

Gu
b′(b, b

′, λ) = −
Ugb′(b, G

u(b, b′, λ), b′)

Ugg(b,Gu(b, b′, λ), b′)
> −

Ugb′(b, g
u(b, b′), b′)

Ugg(b, gu(b, b′), b′)
. (93)

The differentiation of the first-order condition Ug(b, g
u, b′) = 0 shows that gub′ = −Ugb′/Ugg.

Moreover, we know from (64) that gub′ = βa3/(a1 + a3). Combine the last two equalities
with (93). This yields (91).
We are now able to show that (88) holds. Combine (91) and the equality Γb = −1.

Thus,

Gu
b′(b, b

′, λ)−
β

2
|Γb(b

′, b′′)| > β
a3

a1 + a3
−

β

2
= β

(

a3
a1 + a3

−
1

2

)

.

Define ε2 ≡ β
(

a3
a1+a3

− 1
2

)

. Since (85) ensures that ε2 > 0, any positive ε ≤ ε2 satisfies

(88).
Finally, we study inequality (89). We adopt a similar approach. Observe that

Gu
b′(b, b

′, λ)−
β

2
|Gu

b (b
′, b′′, λ)| > β

a3
a1 + a3

−
β

2

Ubg(b,G
u(b, b′, λ), b′)

Ugg(b, Gu(b, b′, λ), b′)
.
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Recall that (90) establishes that 0 < Ubg/Ugg < 1. Therefore,

Gu
b′(b, b

′, λ)−
β

2
|Gu

b (b
′, b′′, λ)| > β

a3
a1 + a3

−
β

2
.

As before, (89) is satisfied for any positive ε ≤ ε2.
To conclude this subsection, we define ε ≡ min{ε1, ε2}. Clearly, this definition entails

that (86), (87), (88) and (89) hold.

III The policy gN

Consider the problem of maximizing Ω(g, 0) subject to g ≤ Γ(0, 0), where Ω(g, b) is defined
in (43). The first-order condition is Ωg(g, 0) ≥ 0. If the constraint does not bind, then
that condition becomes equality (49). Thus, it should be clear that the variable gN defined
in subsection 5.2 is the maximizer of Ω(g, 0) under the assumption that the constraint
g ≤ Γ(0, 0) does not bind.
In Proposition 9 we establish the properties of gN that relate to the reasoning developed

in subsection 5.2. Before that, we state the following lemma.

Lemma 9 Let (β, U, γ,Γ, f b, B̄) be an economy with BL = B̄. There are numbers λb
1 and

NN(β, λ) with the property that, for every polity (λ, n) satisfying λ > λb
1, the policy (gN , 0)

is a symmetric political outcome if and only if n ≤ NN(β, λ). Furthermore, NGC(gN ) > 0
if n < NN(β, λ).

Since the proof of this lemma is long, we present it at the end of this section.

Proposition 9 Suppose that gN < Γ(0, 0). Then:
(i)When NGC(gN) < 0, NGC(g) < 0 for every g.
(ii) If BL is sufficiently close to zero, NGC(gN) ≥ 0.
(iii) If BL is sufficiently close to B̄, NGC(gN ) ≥ 0 if λ is sufficiently large and n is
sufficiently small.

Proof. Since gN is the maximizer of NGC, NGC(gN) ≥ NGC(g) for every g. Hence, (i)
must hold. Concerning (ii), observe that

NGC(g;BL) =
β

1− β

{

U(0, g, 0)− U(BL, G(BL, BL, λ), BL) +
λ

n
[g −G(BL, BL, λ)]

}

−

[V (0, G(0, BL, λ), 0)− V (0, g, 0)],

where the notation NGC(g;BL) is used to emphasize that NGC depends on BL. Set
BL = 0. Simple algebraic manipulations then lead to

NGC(g; 0) = Ω(g, 0)− Ω(G(0, 0, λ), 0).

Because gN is an interior maximizer of Ω(g, 0), which is strictly concave in g, it follows
that

Ω(gN , 0)−Ω(G(0, 0, λ), 0) > 0 ⇒ NGC(gN ; 0) > 0.
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Given the continuity of all relevant functions, NGC(gN ;BL) ≥ 0 for BL > 0 but sufficiently
close to 0.
Result (iii) would follow from Lemma 9 if BL = B̄. The continuity of NGC then

implies that NGC(gN ;BL) ≥ 0 whenever BL is sufficiently close to B̄ provided that λ is
sufficiently large and n is sufficiently small.

More generally, whether NGC(gN ;BL) ≥ 0 holds or not for intermediate levels of BL

depends on the array (β,U, γ,Γ, f b, B̄, λ, n) that characterizes a society.

Proof of Lemma 9. Recall that gN depends on n. We emphasize this fact along this
proof by writing gN(n). Furthermore, functions Ω0 and Ω also depend on n. Thus, we will
also explicitly write n as an argument of these two functions.
From Lemma 6 (see subsection II.2 of this online appendix), G(0, B̄, λ) = Γ(0, B̄) for a

sufficiently large λ. Furthermore, Γ(0, 0) ≥ gN(2). Therefore,

G(0, B̄, λ)− gN (2) ≥ Γ(0, B̄)− Γ(0, 0) > 0

for a large λ. Hence, there exists a number λb
1 (that does not depend on n) such that if

λ > λb
1, then

U(0,Γ(0, B̄), B̄)− U(0, g∗(0, 0), 0) + λ[G(0, B̄, λ)− gN(2)] >

β

1− β

[

U(0, g∗(0, 0), 0)− U(B̄, γ, B̄)
]

.

We use the facts that

U(0,Γ(0, B̄), B̄)− U(0, g∗(0, 0), 0) + λ[G(0, B̄, λ)− gN(2)] =

[U(0,Γ(0, B̄), B̄) + λG(0, B̄, λ)]− [U(0, g∗(0, 0), 0) + λgN(2)]

and G(0, B̄, λ) = Γ(0, B̄) to conclude that

[U(0, G(0, B̄, λ), B̄) + λG(0, B̄, λ)]− [U(0, g∗(0, 0), 0) + λgN(2)] >

β

1− β

[

U(0, g∗(0, 0), 0)− U(B̄, γ, B̄)
]

≥

β

1− β

[

U(0, gN (n), 0)− U(B̄, γ, B̄)
]

for every n. These inequalities imply that there is a number k(β, λ) with the property that
if n ≥ k(β, λ), then

[U(0, G(0, B̄, λ), B̄) + λG(0, B̄, λ)]− [U(0, g∗(0, 0), 0) + λgN(2)] >

β

1− β

[

U(0, gN(n), 0)− U(B̄, γ, B̄)
]

+
1

n

β

1− β
λ[Γ(0, 0)− γ].

Combine the last inequality with U(0, g∗(0, 0), 0) ≥ U(0, gN(n), 0) and Γ(0, 0) ≥ gN (2) ≥
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gN (n) to conclude that

[U(0, G(0, B̄, λ), B̄) + λG(0, B̄, λ)]− [U(0, gN (n), 0) + λgN (n)] >

β

1− β

[

U(0, gN (n), 0)− U(B̄, γ, B̄)
]

+
1

n

β

1− β
λ[gN (n)− γ].

This inequality is equivalent to Ω0({g̃t, b̃t+1}
∞

t=0;n) > Ω(gN(n), 0;n). Thus, if λ > λb
1 and

n ≥ k(β, λ), then (gN(0, n), 0) is not a symmetric political outcome.
Consider inequality (42). We use it to conclude that the policy (gN(n), 0) is an equi-

librium outcome if and only if

NGC(gN ;n) = Ω(gN(n), 0;n)−Ω0({g̃t, b̃t+1}
∞

t=0;n) ≥ 0,

where n as argument of NGC emphasizes that it also depends on n. Now, observe that

Ω(gN(N b(β, λ)), 0;N b(β, λ)) > Ω(g∗(0, 0), 0;N b(β, λ))

and
Ω(g∗(0, 0), 0;N b(β, λ)) = Ω0({g̃t, b̃t+1}

∞

t=0;N
b(β, λ)).

Thus, NGC(gN ;N b(β, λ)) > 0. On the other hand, NGC(gN ; k(β, λ)) < 0. Hence,
the intermediate value theorem implies that there exists a number NN(β, λ) satisfying
NGC(gN ;NN(β, λ)) = 0.
We still have to show that (gN(n), 0) is a symmetric political outcome if and only if

n ≤ NN(β, λ). Regardless of whether the constraint gN(n) ≤ Γ(0, 0) binds or not, it is
possible to show that

∂NGC(gN ;n)

∂n
= −

βλ

(1− β)n2
[gN (n)− γ] < 0.

Hence, NGC(gN ;n) ≥ 0 if and only if n ≤ NN (β, λ). The same argument establishes that
NGC(gN ;n) > 0 if n < NN(β, λ). �

IV An equilibrium set

In this section we characterize a set of static equilibrium outcomes and investigate how
it depends on n and BL. As discussed in section 5, that dependence is shaped by the
interaction between those two variables.
Recall that inequality (42) defines a necessary and sufficient condition for a policy

{gt, bt+1}
∞

t=0 to be an equilibrium outcome when there is no legal constraint on the govern-
ment debt. When there is such a constraint, a sufficient condition for a policy {gt, bt+1}

∞

t=0

to be an equilibrium is

Ωs({gt, bt+1}
∞

t=s) ≥ U(0, G(0, BL, λ), BL) + λG(0, BL, λ) +

β

1− β

[

U(BL, G(BL, BL, λ), BL) +
λ

n
G(BL, BL, λ)

]

.
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This inequality is still too open-ended to carry out a sharp analysis of how the interaction
of n and BL impacts the sustainability of a given policy. Hence, as in the main text, we
focus on static outcomes here.
To save on notation, denote the right-hand side of the last inequality by R(n,BL).

When its left-hand side is restricted to sequences in which gt = g and bt+1 = 0 for all t, it
becomes

Ω(g, 0) ≥ R(n,BL), (94)

where Ω(g, 0) is defined in (43).
Let S(n,BL) be the set of all values of g that satisfy (94). Recall that gN is the

maximizer of Ω(g, 0). Hence, no static policy will be sustainable if Ω(gN , 0) < R(n,BL); as
a consequence, S(n,BL) = ∅ in that case. If Ω(gN , 0) = R(n,BL), then S(n,BL) = {gN}.
Finally, if Ω(gN , 0) > R(n,BL), then S(n,BL) = [gs, gN ], where gs solves the equation
Ω(gs, 0) = R(n,BL). Observe that if g

s > g∗(0, 0), then gs = gf , which was defined in
subsection 5.2.
We now start to evaluate how changes in n impact S(n,BL). For simplicity, we assume

throughout the remainder of this section that gN is an interior maximizer of Ω(g, 0). For
future reference, observe that

NGC(g, n,BL) = Ω(g, 0)−R(n,BL).

NGC(g, n,BL) is exactly the net gain from a political compromise defined in section 5.
We add n and BL to the list of arguments to emphasize that NGC also depends on those
variables.
Consider first the case in which

NGC(gN , n,BL) < 0. (95)

That is equivalent to saying that S(n,BL) = ∅. Let NGCn denote the partial derivative
of NGC with respect to n. We have that

NGCn(g
N , n, BL) =

∂Ω(gN , 0)

∂g

∂gN

∂n
+

βλ

(1− β)n2
[G(BL, BL, λ)− gN ].

However, gN is an interior maximizer of Ω. Therefore, ∂Ω(gN , 0)/∂g = 0 and

NGCn(g
N , n, BL) =

βλ

(1− β)n2
[G(BL, BL, λ)− gN ]. (96)

Thus, NGCn(g
N , n, BL) will have the same sign as the differenceG(BL, BL, λ)−gN . Hence,

if G(BL, BL, λ) − gN ≤ 0, then (95) will continue holding after the increase in n, and
S(n,BL) will continue to be empty after such an increase. On the other hand, that set
may become not empty if n decreases. The opposite happens when G(BL, BL, λ)−gN > 0.
We now turn to the case in which

NGC(gN , n,BL) = 0, (97)

so that S(n,BL) = {gN}. We again resort to (96). If G(BL, BL, λ) − gN > 0, then an
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increase in n will make the left-hand side of (97) larger than its right-hand side. Therefore,
such an increase will expand the set S(n,BL). On the other hand, the set will become
empty in n decreases. The opposite happens when G(BL, BL, λ)− gN ≤ 0.
Finally, consider now the case in which NGC(gN , n,BL) > 0. As pointed out above, in

this case S(n,BL) = [gs, gN ]. Hence, we need to assess the impact of n over both endpoints
of that interval. Consider first gN . Since ∂gN/∂n < 0, an increase in n will decrease the
value of that endpoint. Concerning gs, recall that

Ω(gs, 0) = R(n,BL) ⇔ NGC(gs, n, BL) = 0.

Differentiating the last equality with respect to n, we obtain

∂NGC

∂g

∂gs

∂n
+

∂NGC

∂n
= 0 ⇒

∂gs

∂n
= −

∂NGC
∂n

∂NGC
∂g

.

Hence,
∂gs

∂n
=

βλ

(1− β)n2

gs −G(BL, BL, λ)

Ωg(gs, 0)
.

Use the facts that Ω is strictly concave in g, gs < gN and Ωg(g
N , 0) = 0 to conclude that

Ωg(g
s, 0) > 0. Thus, ∂gs/∂n will have the same sign as the difference gs − G(BL, BL, λ).

Furthermore, ∂gs/∂n is strictly increasing in BL.

The main message from this exercise is that the impact of a change in n on the set
S(n,BL) depends on the value of G(BL, BL, λ), which in turn hinges on BL. The effects
are entirely analogous to those we analyze in section 5 of the main text, underlining that
the set in question depends on the interaction between n and BL in a very precise and yet
general way.
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