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This appendix contains four sections, described as follows:

(I) In the context of example 2, we show how to compute B, how to construct functions
f? and T, and that all assumptions introduced in subsections 4.1.2 and 4.1.3 are satisfied
under reasonable parameter restrictions.

(IT) We show that the spendthrift policy is an equilibrium outcome.

(ITIT) We study the properties of the policy ¢g" that maximizes the net gain from coopera-
tion, NGC'(g).

(IV) We characterize a set of static equilibrium outcomes and study how it changes with
n and Bj.

We follow the numbering scheme of equations, propositions, lemmas, etc. of the main
body of the paper.



I The value B, functions f’ and I', and assumptions
from subsections 4.1.2 and 4.1.3 under example 2

We show here how to compute B and construct the functions f° and I' in the context of
example 2. We also show that all assumptions introduced in subsections 4.1.2 and 4.1.3
are satisfied in the context of that example provided that the relevant parameters satisfy
some reasonable restrictions.

Computing the maximum level of debt B. Let B, denote the maximum value that b
can assume in a steady state. Clearly, B, < B. On the other hand, B has to be attainable
in a steady state; thus, B < B,. We conclude that B = B,. Therefore, to find B it is
enough to find the maximum attainable steady-state value of b. In such a context, b = b'.

Hence, (20) becomes
1

To evaluate B, it is enough to select an attainable vector (7, g) to maximize (71 — g). Let

us carry out this task for the preferences in example 2. Given that [ satisfies (9), we have
to set g equal to its minimum value 7. We should set 7 equal to the upper bound 7. As a

consequence,
— 1 aq
B = T — .
1-— ﬁ ( a; + as /7)

Functions f° and I', constraints (25) and (26), and inequality (27). We start with
the construction of function f°. Combine (20) with (9) to obtain

_ a _ _ a
bt+1=61 by +g: — T4 ! > Bt by +~v—T - .
a1 + as ai + ag

Now, define f* according to

b

(1l — g).

(b)) = B (bt oy ) . (54)

a; + as
It is a straightforward exercise to show that fb(g) = B. Moreover, the definition of fb
implies that b, 1 > f°(b;), while the definition of B implies that by, ; < B. Therefore, (25)

is satisfied.
Consider now I' and (26). Again, combine (20) with (9). This procedure leads to

a (451

= 4+ Bb1 —b, < 7T + Bbi1 — by
gt Tta1+a2 Bbyi1 t_Ta1+a2 Bbyi1 t
Therefore,
_ a1
I'(bs, b = byq — by
(bt, be11) Ta1+a2 + Bbiy1 ¢ (55)

Note that I'(B, B) = 7. Since g; > v and g; < I'(b;, bi11), (26) holds.
Given that I', = —1 and 'y = 3, T'y(b,0) + I'y(b,0) = —1 4+ 8 < 0. Hence, inequality
(27) is satisfied.



Inequalities (30), (31), and (32). As pointed out in the discussion of example 2,
a1 — (a1 + az)(g+b— pv’) > 0.

Now, differentiate (37) and use the above inequality to conclude that

N ay (a1 + as)
Us(b,9.¥) = == (@ ta)gtb—p0) - (56)
N ai(a; + az) a3
Ug(b,g, b) == ag — (Cll + aQ)(g + b o Bb/) q ’ (57)
Uy (b, 9,b') = Jas(a + 2 >0, (58)

a1 — (a1 + a2)(g + b — BV

n_ a1(a; + az)? as
Usolb:9,b) = {[m "l +a)g + b= T 92} <0 (59)

B ai(a; + as)?
[a1 — (a1 + a2)(g + b — BY)]

Bai(a + a2)2
@ — (@ +aa)(g + b= oI (61

Ubg(baga b/) = 2 < 07 (60)

Ugb/ (b7 9, b/) -

and
(1—B)ai(ar + a2)?

- <

{a1 = (a1 + az)g + (1 = B)b]}?
Hence, all inequalities in (30), (31) and (32) are satisfied in the context of example 2.
Condition (33). Let b and b be two attainable debt levels satisfying b < b. Combine (56)
with (58) to conclude that Uy (b, g,b) + Uy (b, g,b) < 0. Apply this result to conclude that
U(b, g*(b,b),b) < U(b,g*(b,b),b). On the other hand, U(b, g*(b,b),b) < U(b, g* (b,b),b).
Combine the last two inequalities to obtain the desired result.

Ubg(bv g, b) + Ugb’(bv g, b) = 0.

Condition (34). First, let us introduce two conditions. Inequalities

as

T > 62
! a1+ ag (62)
and as
<(1-—7 63
R (63)

ensure that the maximum tax rate 7 is not too small and that ~ is not too large.

Clearly, there is nothing to show if ¢*(b,0') = I'(b,t’). Hence, assume that ¢*(b,b") <
I'(b,t'). Let g“(b,0') be the unconstrained maximizer of U(b, g,b'). If g“(b,b") > =, then
g*(b,b') = g*(b,b") and we have the desired result. Thus, we conclude by showing that if
g“(b,0") <, then (63) is violated.

By setting the partial derivative in (57) equal to zero, we conclude that

g (b, b) = —8 ( 4 +ﬁb’—b). (64)

CL1+CL3 a1 + G2



Therefore,
7> g ) =y > — -

+ V' —b). 65
a1 + asz a1 + a9 CL1+CL3(5 ) ( )
Now, combine the fact that & > f°(b) and (54) to conclude that

Together with (65), the last inequality implies that

as aq as _
> + vT .
a1 + az a; + aq CL1+CL3( a1+a2)
Reorganizing this inequality, we obtain

as
aq + a9

7= (1-7)

Inequality (35). Combine (55), (62), and (64) to conclude that

as a1 a

g“(0,0) = <7
a; +asa; + as a1 + az

=1(0,0).

Thus, it remains to show that ¢*(0,0) = ¢*(0,0). Given that ¢*(0,0) < I'(0,0), the last
equality will hold if ¢*(0,0) > ~. Now, observe that (62) implies that
as ai

1-7<1- = .
a1 + as a1 + as

Combine this result with (63). This yields

aq as
< = ¢"(0,0).
i a1 + asz a1 + a9 g( )

II The spendthrift equilibrium

We state in the main body of the paper that the spendthrift policy is a symmetric political
equilibrium if conditions (C'1) and (C2) are satisfied. In this section we prove that assertion.
We first discuss it in an intuitive way in subsection II.1. A formal argument is presented
in subsection I1.2. That argument relies on some properties of the partial derivatives of
the function G. We show in subsection I1.3 that the properties in question are satisfied in
the context of example 2.

II.1 The underlying intuition

In this subsection we intuitively discuss why conditions (C'1)-(C2) ensure that the spend-
thrift policy is an equilibrium outcome. Since A\ measures politicians’ degree of profligacy,
it may appear that condition (C1) alone would be enough to ensure that the spendthrift
policy is an equilibrium outcome. However, this need not be true. The reason is that a



high A represents a penchant for rents today but also in the future, and setting b; = B
would decrease future rents to their minimum level.** It is then clear that some additional
requirement is needed to ensure that the spendthrift policy is an equilibrium outcome.
Condition (C2) does just that.

To see the role of condition (C2), take a policy {g¢, bir1}52, with the property that
g+ = G(bt, by 1, \). For simplicity, assume that the partial derivatives Gy, and Gy are defined
at every point (b, b, A). Let ¢t be any date and § a small positive number. If b;,; increases
by 4, g; will grow by approximately 0Gy (b, byy1, A) while gy will fall by approximately
—0Gy(by1, b, A). Note that G and Gy include possible endogenous changes in taxation
due to changes in g;. Hence, a policymaker can substitute g; for g;,1 at the rate

N 6Gb’(bt7 bt+17 )\) _ Gb’ (bt7 bt+17 )\)
Gy (brs1, b2, A) Gp(bis1, bira, A)

In a symmetric outcome, the derivatives of the date-t incumbent’s payoff with respect
to ¢, and ¢,+1 are equal to, respectively, U, (b, gi, bi+1) + A and B[U, (bi11, Git1, bev2) + A/nl.
Therefore,

dge L Ug(big1, gig1, bey2) + A/n

B dgi1 Ug(bes 9t, bi1) + A ’

where —dg;/dg;;1 is a standard intertemporal marginal rate of substitution. Thus, the
date-t incumbent has an incentive to increase g; and to reduce g, 1 by issuing debt whenever

_ Gb’ (bt7 bt+17 )\)
Gb(bt+17 bt+27 )\)

Now, in line with (C1), make A — oo. Since U, is bounded, the right-hand side of the
inequality above converges to 5/n. Hence, for A sufficiently large, it becomes

Gy (br, b1, A) B

— > .
Gy(biy1, b2, A) ~ n

Ug(be+1, Get1, bet2) + A/
Ug(bi, gt, be1) + A

> f3

For this condition to hold for all n, we need that

. Gb'(btabt-l-lv)\) > é
Gp(bs1, bpgo, A) — 2

Thus, if A is large, the date-t incumbent will always have an incentive to issue debt and
increase g, if inequality (66) holds, which is precisely what condition (C2) ensures. In the
next subsection we provide a more general version of (66) that takes into consideration,
among other technical issues, that G, and Gy may be undefined at some points (b, V', A).

To better understand the nature of condition (66), consider that the economy is in
a steady state, so that b, = b, for all £. In such a context, one can show that the
left-hand side of (66) would be equal to S and the inequality would be trivially satis-
fied. Thus, one can interpret inequality (66) as a condition that ensures that the ratio
Gy (b, bi1, A)/Go(bii1, b2, A) does not deviate too much from its steady-state value.

(66)

41t is easy to see, for example, that a dictator would set g; = ¢” and th+1 = 0 for every t, thus keeping
the public debt unchanged regardless of the value of .



I1.2 A formal argument

We establish here that the spendthrift policy is an equilibrium outcome if conditions (C1)
and (C2) are satisfied. We proceed in steps, since this is a long exercise. Those steps
consist of:

1. Proving that the function G is strictly decreasing in b, strictly increasing in &', and
increasing in .

2. Showing that there exists a number A; that does not depend on (b,b") with the
property that A > Ay = G(b, ', \) =T'(b, V') for every (b,b').

3. Showing that the partial derivatives of G' are bounded.

4. Establishing a technical condition that is similar but more general than the intuitive
constraint (66) of the previous subsection, which in turn corresponds to condition

(C2).

5. Characterizing the part of the expected payoff of the date-t incumbent that depends
on that player’s actions and showing that it is strictly increasing in b,y for every t
if (C1) holds (i.e., if A is sufficiently large).

6. Showing that, under (C'1) and (C2), an incumbent will always be willing to increase
the public debt until it reaches the upper bound B, and therefore the spendthrift
policy plan constitutes a symmetric political equilibrium.

Let us outline how each of these steps fits into our task. We do that in a reverse order.
Consider step 6, which is the last and most important one. It is carried out in Proposition
8. Step 5 consists of establishing Lemma 8, which is used in the proof of Proposition 8.
Step 4 consists of spelling out two conditions, namely (72) and (74), on the derivatives of
(. They are used in the proof of Lemma 8. Step 3 is formalized in Lemma 7, which in turn
is applied to prove Lemma 8. Step 2, used to obtain step 3, consists of establishing Lemma
6. Finally, step 1, employed to carry out the subsequent step, is formalized in Lemma 5.

We need to introduce some notation. We denote the solution of the unconstrained
version of (38) by G*. That is, G*(b, ', \) is the maximizer of U(b, g,b') + Ag. Since U
is strictly concave in g, condition (34) implies that Uy(b,v,0') > 0 if I'(b,0') > 7. As a
consequence, if the last inequality holds, then G*(b, b/, \) > .

Lemma 5 The function G is strictly decreasing in b, strictly increasing in b', and increas-
mng m A.

Proof. Let G}, G}, and GY} denote the partial derivatives of G*. We adopt similar
notation for the partial derivatives of G and I'. The differentiation of (40) when it holds
with equality establishes that

Ugy 1

G = — 2% and GY = ——. 67
3 b Ugg an Ugg ( )

Uy

Gy =
’ UQQ

Recall that Uy, < 0. Therefore, G%(b,b', \) > 0. Then, combine the former inequality with
(31) to conclude that Gy (b,0',\) < 0 and G}, (b, ', \) > 0.

)



The function G may fail to be differentiable exactly when G*(b,b', \) = I'(b, V). How-
ever, (G is differentiable whenever G*(b, b, \) # T'(b,¥'). Suppose that G*(b,0’, \) < T'(b,V');
thus, G(b,0',\) = G*(b,0/,\) and G, = G} < 0, Gy = G}, > 0, and G, = G} > 0.
If G¥b,6',\) > T'(b,V'), then G(b,0/;\) = I'(b,b'); as a consequence, G, = I, < 0,
Gb/ =Ty > 0, and G)\ = f)‘? = 0.

Let G, and G} denote, respectively, the left and right derivatives of G with respect to
b. We use analogous notation for the side derivatives with respect to b and \. It should
be clear from the previous paragraph that G, is equal to Gy or I'y. Similarly, G} = G}
or Gf =T. The same reasoning applies to the side derivatives with respect to b and .
Therefore,

G, <0,Gf <0,G, >0,G}, >0,G; >0, and G} > 0.

Even if G is not differentiable when G*(b,b', \) = I'(b, ), the inequalities above allow us
to conclude that G is strictly decreasing in b, strictly increasing in &’ and increasing in .
Consider the variable b. At a point where Gy, is not defined, both the left G, and the right
Gy partial derivatives are negative. Since G is continuous, we can be sure that its value
decreases as b increases. Analogous reasoning applies to b’ and \. =

Lemma 6 There exists a number \; that does not depend on (b,') with the property that,
if A\ > Ay, then G(b,b/,\) =T'(b,V') for every (b,).

Proof. The definition of G* implies that U,(B,G*(B,—B,\),—B) = —\. Therefore,
limy o, Uy(B,G*(B,—B,\),—B) = —oo. Recall the definition of T' from the proof of
lemma 5 in the appendix of the main text. Since UQ(B7 [, —B) > —oo, then there must
exist a number \; with the property that, if A > A{, then

[ <G“B,—B,\). (68)

Now, observe that both b and ¢’ belong to [—~B, B]. Hence, b < B and ¥ > —B. Use
the fact that G} < 0 and G}, > 0 to conclude that

G"“(B,—B,\) < G*(b,V/,\)

for every (b,b). Combine the last inequality with (68) to conclude that if A > A;, then
' < G%b,b,\) for every (b,t'). However, I'(b,0/) < I'. Hence, G“(b,b',\) > T['(b,¥)
whenever A > A\;. Thus, G(b,0/, \) =T'(b, V') for every A > A\;. ®

Our next step consists of showing that some of the partial derivatives of G are bounded.
Taking into account that GG, may be undefined at some points, we need to establish that

sup [max{|G, (b,V, \)], |G (b,0',\)|}] < <. (69)
(b, ,X)

Observe that if G, is defined everywhere, then G, = G; and (69) is equivalent to
SUP(p 2 |Go(b, V', A)| < 0o. In a similar fashion, we have to prove that

sup_[max{|Gy (b, U M), |G (0.1 V)]}] < oo. (70)
(b,07,X)

Lemma 7 The partial derivatives of G satisfy (69) and (70).

6



Proof. Since (b,0') € [-B, B] x [-B, B], we can conclude that sup,, [Ts(b, V)] < oc.
Now, take any A larger than A\;. Lemma 6 implies that G, is well defined and equal to I',.
Therefore, (69) holds if we impose the extra condition that A > A;. If A < Ay, then (b, V', \)
lies in a compact set; hence, sup, ) [G}(b, 0, \)| < co. Moreover, Gy is equal to Gy or
I'; the same applies to G; . Thus, both G, and G} are bounded for A < \;. Hence, (69)
holds if we impose the extra condition that A < A;. Since (69) holds for A > A; and A < Ay,
it clearly holds if we do not place any constraint on A. Similar reasoning establishes that
(70) holds. =

We now lay out a technical condition that is equivalent to the intuitive constraint (66)
on the partial derivatives of G, and Gy. For a moment, assume that those derivatives are
well defined. Use the fact that G, < 0 to rewrite (66) as

Gy bV, \) — §|Gb(b/, b, \)| >0,

where b” denotes the public debt two dates ahead. For technical reasons, we need the
left-hand side of that inequality to be bounded away from zero. That is,

Gy (b,b',\) — §|Gb(b’7b"7)\)| > €

for some positive . After we take into consideration that G, and GGy may be undefined at
some points, the last inequality has to be replaced by

G;(b7b/,)\)—§|Gb_(b’7b/’,)\)| > € (71)

and
G,‘j(b7 v, A) — §|G;(b’, b, A)| > e. (72)

For our purposes, it is possible to replace inequalities (71) and (72) with two much

weaker conditions. It suffices to assume that there exist numbers Ao > 1, ¢ > 0 and
n € [0,1) such that, if A > Xg, then

Gy, (b, V', \) — §|Gb‘(b’7b”, A)| > e/ (73)

and
G;C(b, v, — §|G;’(b’,b”, A > e/ (74)

for every (b,b',0"). Observe that the left-hand side of (71) is bounded away from zero,
while the left-hand side of (73) may fall to zero as A goes to oo, provided that such a
decline does not happen too fast. A similar remark applies to (72) and (74).

Our next step consists of characterizing the part of the expected payoff of the date-
t incumbent that depends on that player’s actions. Given that each incumbent faces a
problem similar to the ones faced by its predecessors and successors, it suffices to carry
out that task for party py when the initial public debt assumes a generic value by.

Let €2,, denote the expected payoft of the date-zero incumbent and w,, be the part of
€2, that depends on that player’s actions. We define wy,  as the undiscounted date-t part of

7



Wpe- Thus, wyy = > 700 Bwpy +- To assess wy,, we evaluate each of the factors wy, ;. At date
zero, party po chooses by and its date-zero period payoff is equal to U(bg, G (b, b1, A), b1) +
AG(bg, b1, ). Hence, wy, o is equal to that expression.

With respect to date 1, if the date-zero incumbent py were again in office, then its
period payoff would be U(by, G(b1, ba, A), ba) + AG(by, ba, \); otherwise, the party in office
would leave the debt at B and the period payoff of party py would be U (b1, G (b1, B, \), B).
Hence,

n—1

1 _ _
wpo,l = E [U(bl, G(bl, bQ, )\), bQ) + )\G(bl, b2, )\)] + U(bl, G(bl, B, )\), B)
At date 2, suppose that pg were in office at date 1. If it were again in office at t = 2,
then its payoff would be U(bs, G(b2,b3,A),b3) + AG(b2, b3, A); otherwise, its period payoff
would be U(by, G(bs, B, \), B). Hence, the term

1 (1 —1
g {E [U(b27 G(b27b37 )\)7b3) + )\G(bg,b:}?)\)] + -

U(bg,G(bg,B)\),B)} (75)

must be a component of wy, 2. Suppose now that party py were not in office at date 1; its
period payoff would be U(B,G(B, B, \), B) +\G(B, B, ) if it were in office at date 2 and
U(B,G(B, B,)), B) otherwise. Since these last expressions do not depend on the choices
of party po, we conclude that wy, 2 is equal to the expression in (75).

We now apply this reasoning to a generic date t > 2. Suppose that py were in office
at all previous dates. If it were again in office, then its period payoff would be equal to
U(by, G(be, ber1, A), bir1) + AG(by, b1, A); otherwise, its period payoff would be equal to
U(b, G(bs, B, \), B). If py were not in office on at least one of the previous dates, then its
period payoff would be U(B, G(B, B, \), B) + A\G(B, B, \) if it were in office at date t and
U(B,G(B, B, \), B) otherwise. Therefore,

1N\ [1
Wpot = (—> {_[U(bt7G(bt7bt+17)\)7bt+1)+ (76)

n n

— ]_ _ _
AG (by, b, V)] + nTU(bt, G(bi, B, ), B)} :

We conclude that
Wpy = U(bo, G(bg, b1, A),b1) + AG(bg, by, \) (77)
1
I} {ﬁ [U(b1, G(b1, b2, A), by) + AG (b1, ba, N)] +

o0

U(by, G(b1, B, \), B)} + Z B wpo.-

t=2

n—1

n

For future reference, we point out that > =, 'wp, ; does not depend on b;.

Lemma 8 Suppose that (73) and (74) hold. Then, there exists a real number X with the
property that, if X > X, then w,, s strictly increasing in byyq for every t.



Owp
Proof. Let ab_" and ab+

respect to b;. Hence,

denote the left- and right-side partial derivatives of wp, with

Owp, .
T = U(bo, Glbn. i, V), br) + Uy (bo. Gbo, ba, A), 1)y (b, br. A) +
1
)\Gl; (b(), blv ) B [Ub(blv (b17 b?v )\)7 b?) + (78)
Ug(b17 G(b17 b27 )\)7 bQ)Gb (b17 b27 )\) + )\Gb_ (b17 b27 )\)] +
n—1 _ _ _ _ _
B [Uy(b1, G(by, B, \), B) + Uy (b1, G(b1, B, \), B)G,, (b1, B, \)].

Use the fact that G, <0 and Uy > 0 to conclude that

Owp,

- Uy(bo, G(bo, b1, A), b1) G, (bo, b1, A) +
1

1 _ _
ﬁan(bh G(b1, b2, N),b2) + 5 Ub(bh G(bi,B,\),B) +

1
BEUg(bly G (b1, b2, A), bQ)Gb_(bla b, \) +

n—1

B——U, (b1, G(b1, B, \), B)Gy (b1, B, \) +

1
A {G;(bo,bl, A) — BE|Gb_(bl,bg, )\)|} .

Now, observe that Uy, <0, G, > 0, Upy < 0. Therefore,

W C

-1 o
Ub(b17F7B)} +

{1
— +
n n
1 n—1
n n

Ug(b1777 bQ)Gb_(bth? )\) + Ug(bhf% B)Gb_(bh Bv )\)} +
1
A {G;(bo,bl,)\) — Bg|Gb_(bl,bg,)\)|} .

The last expression implies that

o [min U,(b,T, b’)] Gy (bo, by, )+ min Uy(b, T, )+

oby T |y)
1 , _ n—1 , -~ _
ﬁ{ {I(IZ)I%))(U (b,fy,b)} Gy (b1,b2,\) + - |:1(1;2;%<U (b,’y,b)} G, (bl,B,)\)} +
A |:Gb/(b07b17 ) |G (b17b2,)\)|:| > —0Q.



Since n > 2, U, (b,T',V') < 0, G, > 0, and Uy, (b, ~,V') > 0, we have

O, _
P > a6y (nb ) - 531G, (b V. (19
where
A- = [man (b,T b’)] sup Gy, (b,b', )| + Smin Uy(b, T, V') — (80)
(0,0") (QUBY (b,')

154 [maxU (b, 7, b’)- [sup |G, (b, b’,)\)|] :

(b,0") (b,6',2)

Now use the fact that b and o' belong to [—B, B] and that the partial derivatives of U
are continuous to conclude that min, ) Uy(b,I',0') > —o0, ming ) Uy (b, T, b') > —o0, and
max s p) Ug(b, 7, b') < oo. Therefore, (69) and (70) imply that A~ > —oo.

Combine (79) with (73) to conclude that if A > Xg, then

Owp,

by

> A"+ M e > —.

Similar reasoning establishes

awpo

b7

> AT N e > —o0,

where A% is defined exactly as A™, except that G} and G; replace their left-sided coun-
terparts in (80) Thus, there exists a number X > Ay with the property that if A > X, then
%@ > 0 and —%* ab+ > 0. Since wy, is a continuous function of by, we conclude that w,, is
strlctly increasing in by .
We still have to show that wy, is strictly increasing in byy; for a generic date ¢. From
(77) we conclude that
Owp, _ gt ¢ Owp, + gt '
Ob; 1 Iby 4 8bt_+1

Combine this expression with (76) to obtain

%_i = (g)t [Up (be, G(b, b1, A)y ber) + Ug(be, G(biy bigr, A), biy1) Gy (b, bea, N+
AGy (b, betr, A)] + <§)t {B%[Ub(bt-i-lv G(bet1, beta, A), biya)+
Ug(bey1, G(beg1, bira, A), bey2) Gy (begr, bera, ) + AGy (begr, biga, )]+
B U (brr, Glbrss, BN, B) + Uy (bsr, Glbiar, B, V), B)Gy (buan, B, )\)]} |

10



If we follow the reasoning used after obtaining equality (78), we conclude that

Doy > <é> (A= + A7) > —o0

by — \n
and 5 4 .
w
ez () e > o
Hence, sb_p % > (0 and gbf o > 0for A >\ An appeal to continuity establishes that wy, is

. t+1 t+1
strictly increasing in b;, ;. ®

We can now finally establish the main result of this section.

Proposition 8 Suppose that (73) and (74) hold. If X > X, then the spendthrift policy plan
{G:}22, is a symmetric political equilibrium.

Proof. Let t be any date. We have to show that if party p; believes that the other parties
follow the strategy {G5}52,, then {7:}2, is an optimal choice for p,. It is enough to
consider the situation of party py when the initial public debt has a generic value by. The
problem of party py consists of selecting a sequence {b;11}°, that maximizes w,, subject
to

Let {b1}5°, be any sequence that satisfies (81) and (82) with the property that b; < B.
We will show that such a sequence cannot solve the problem of party py by constructing a
sequence {b;y1}7<, that satisfies these constraints and yields a higher payoff.

Let b; be any debt level that satisfies b1 < by < B. Define the debt level at the other
dates recursively according to

b = max{ f*(by), b1} (83)

Therefore, {b;;1}52, satisfies (82).

We next show that {b,1}{2, satisfies (81). Recall that f* is strictly increasing and
fY(B) = B. Thus, the inequality b; < B implies that f*(b;) < f*(B) = B. Since b, < B,
we conclude that max{ f°(b;), b} < B. Thus, b, < B. Apply this reasoning recursively to
conclude that {b;y1}°, satisfies (81).

To conclude the proof, observe that (83) implies that b; 1 > bt+1 Therefore, an appeal
to Lemma 8 establishes that {b,1}5°, yields a higher payoff than {by1}°,. Hence, the
optimal action for party po entails setting b; equals to B. Therefore, {5}, is an optimal
strategy for the date-zero incumbent. m

I1.3 The assumptions about the derivatives of G

In this subsection we show that the assumptions on the partial derivatives of the function
G introduced in (66), (71), (72), (73) and (74) are satisfied in the context of example 2.
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We start by pointing out that the analysis can be restricted to (71) and (72). Indeed,
if the first of these two conditions holds, then so does (73). To verify that, it is enough to
set 7 =0 in (73). Similarly, (74) holds whenever (72) is satisfied.

Concerning (66), recall that it was used only to argue in an intuitive way that the
spendthrift policy is an equilibrium outcome. As discussed in the previous subsection of this
online appendix, a formal analysis of the spendthrift equilibrium requires that we replace
the two partial derivatives Gy and G} in inequality (66) by their left and right counterparts:
—G, (0,0, N)/Gy (W, 0", X)) > /2 and =G, (b,b/, \) /G (', ", \) > 3/2. Suppose that (71)
holds. Thus,

_ — >
R R R

Gy(b, 0. N) _ Gy(bt. N 2 5.8
2 2°

A similar argument establishes that —G}} (b, b, \)/G (V,b", \) > 3/2 if (72) holds.
Our task from now on is to show that both (71) and (72) are satisfied. To achieve this
goal, it suffices to introduce just one of the following two assumptions:

ALt (84)
1—-7
or
a; < as. (85)

Next we show that each of them implies that both (71) and (72) hold and, as a consequence,
so do the left and right counterparts of (66).

The sufficiency of inequality (84). If (84) holds, then G(b, ', \) =T'(b, V') for all (b,V').
That is, A is sufficiently large so that the maximization of V' (b, g,b") will always lead to a
corner solution. To verify that, observe that

A A a + ag as
r — U, (bT _ '
Vo (b, T'(b,0"),0") = U, (b,I'(b,0),b") + A = +F(b7b’)+)\
Now use the fact that az/I'(b,0’) > 0 to conclude that
V(b T(b,b), 1) > — 0702y

Thus, (84) implies that V,(b,I'(b,0'),b") > 0. Given that V,, < 0, G(b,b',\) = I'(b, ).
Since T is differentiable, in such a context both (71) and (72) are equivalent to

Ty (b, V) — §|Fb(b/, b')| > e. (86)

Therefore, our task consists of finding such a positive e. However, I'y = § and ', = —1.
Thus, the left-hand side of (86) is equal to [3/2. Hence, it is enough to set ¢ = (/2.

The sufficiency of inequality (85). Since we are not assuming that (84) holds, it is
not possible to be sure that G(b,V', \) is a corner solution. Thus, we must also take into
consideration the case in which V' has an interior optimum.

Recall that G" denotes the unconstrained maximizer of V. Therefore, G(b,V/, \) is

12



equal to I'(b,0') or G*(b,1', \). The function G may fail to be differentiable exactly when
I'(b,0') = G*(b,b', \); however, these two last functions are differentiable. Hence, G, must
be equal to I', or G¢; the same is true for G;. Similarly, both G and G} must be equal
to I'y or G},. Thus, to show that both (71) and (72) hold, it suffices to find a positive €
with the property that (86),

Ty (b 1) — §|G§;(b’,b”, N> e (87)
u / g 1o
b’(b7b7)‘)_§|Fb(b7b )| > €, (88)
and 5
w0, b, \) — §|G}j(b/7b”, AN|>e (89)

are satisfied for all attainable (b, b, 0”) and all \. We deal with each of those four inequalities
separately.

We first consider inequality (86). Define ¢; = [3/2. Given the analysis carried out in
the previous subsection, it is clear that I'yy — §|Fb| > £1. Hence, (86) is satisfied for any
positive € < g;.

To study inequalities (87), (88) and (89), we need to evaluate the partial derivatives of
G". We do so by using the implicit derivatives in (67), as well as some of the derivatives
in (56)-(61). For future reference, observe that

Ubg(b» gv b/) ]'
0 = 1 90
= Ugg(ba g, b/) ]- ! “ = ’ ( )

o Ubg (b7g7bl) 9_2

where the equality is obtained by combining (59) and (60) and the inequalities follow from
the fact that Uy, < 0 and Uy, < 0.

We now turn our attention to inequality (87). Since I'y, = (, we can use (67) and (90)
to conclude that

B 1 3
2

Py pp——
Upg(b,g,b') g2

Fb/(b, b/) . glG'g(b/?b//’ )\)| — 6 _

Therefore, it suffices to take any positive € < ;.
To analyze the remaining two inequalities, we will use the fact that

a3

v (b, 0, \) > )
BB >

(91)

To show that the last inequality is true, we first show that the ratio Uy,/U,, is strictly
increasing in g. Define my(m;) = (1 +m4)~! and

1 as

" (b7 a b/) B Ubg(b7 g, b/) ?
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Thus,

om _, 2t + 5" (92)
99 " (Ungg®)?
Together, (56) and (60) lead to
1 o OUy, 2
S —— SN A
Ubg a (Ub) = 89 a bYbg

Combine the last equality with (92) to conclude that

Oml 2Ubgg - a_iUbUngQ
(Usgg?)?

Since Uy, < 0 and Uy, < 0, we conclude that %";l < 0. Finally, we use the facts that 222 < (

dmy
and 78(%;/ Usa) — %% to establish that LU%/ Ysa) 0,
9 mi g 9

Now recall that ¢*(b,b") is the unconstrained maximizer of U (b, g,b"). Since ¢*(b, ") <
G"(b, V', \),

5 Upg(b, G*(b,b', X))
Uyg(b, G4 (b, 1/, N), 1)
From (60) and (61), —Uyy = BU,,. Hence,

Ubg(b7 gu(b’ b/)v b/)
Ugg(b7 gu(bv b/)v b/) '

>

Ugb’ (b7 Gu(b, b,7 )\)7 b/) _ Ugb/(b7 gu

Ugg(b, G¥(b, ¥, M), V) Upgg(b, g (b, 1), )
Combine this result with (67) to conclude that
Ugy (b, G*(b,0', \), V)

U / _ Ugb’ (b, gu(b7 b,)7 b,)
VOO =G G ) T Uyl g0, ¥), )

The differentiation of the first-order condition Uy (b, g%, ') = 0 shows that gy = —Uyy /Uy,.
Moreover, we know from (64) that g, = Bas/(a1 + a3). Combine the last two equalities
with (93). This yields (91).

We are now able to show that (88) holds. Combine (91) and the equality I', = —1.
Thus,

(93)

ﬁ as ﬁ as 1
Y ! — =T (¥, 0" —— = ——= .
b(b7b7)‘) 2| b( ) )|>Ba1+a3 2 ﬁ a1 + as 2

Define e, = 8 (L — %) Since (85) ensures that g5 > 0, any positive ¢ < e, satisfies

ai+as
(88).
Finally, we study inequality (89). We adopt a similar approach. Observe that

as B Uy(b, G (0,0, \), V)
artas 2 Ug(b, G(b, 0/, \), V)

u (b, b, ) — %G}j(b’,b", M| > B
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Recall that (90) establishes that 0 < Uy, /U,, < 1. Therefore,

u (b, BN — §|Gg(b’,b/’,A)| > 52 g

a1 + asg

As before, (89) is satisfied for any positive € < e5.
To conclude this subsection, we define ¢ = min{e;,e5}. Clearly, this definition entails
that (86), (87), (88) and (89) hold.

III The policy ¢

Consider the problem of maximizing €2(g, 0) subject to g < I'(0,0), where (g, b) is defined
in (43). The first-order condition is €,4(g,0) > 0. If the constraint does not bind, then
that condition becomes equality (49). Thus, it should be clear that the variable ¢" defined
in subsection 5.2 is the maximizer of )(g,0) under the assumption that the constraint
g < T(0,0) does not bind.

In Proposition 9 we establish the properties of ¢V that relate to the reasoning developed
in subsection 5.2. Before that, we state the following lemma.

Lemma 9 Let (3,U,~,T, f°, B) be an economy with By, = B. There are numbers )\Z{ and
NN (B, \) with the property that, for every polity (A, n) satisfying A > X5, the policy (g, 0)
is a symmetric political outcome if and only if n < NV (8, \). Furthermore, NGC(g") > 0
if n < NN(3,\).

Since the proof of this lemma is long, we present it at the end of this section.

Proposition 9 Suppose that g™ < T(0,0). Then:

(i) When NGC(g™) <0, NGC(g) <0 for every g.

(ii) If By, is sufficiently close to zero, NGC(g") > 0.

(iii) If By, is sufficiently close to B, NGC(g") > 0 if X is sufficiently large and n is
sufficiently small.

Proof. Since ¢" is the maximizer of NGC, NGC(g") > NGC(g) for every g. Hence, (i)
must hold. Concerning (ii), observe that

A
NGC(.Q? BL) = % {U(07 g, 0) - U(B[n G(B[n BL7 )\)7 BL) + ﬁ[g - G(BIn BL: )\)]} -
[V(0,G(0,Br,\),0) —V(0,g,0)],
where the notation NGC(g; By) is used to emphasize that NGC depends on Bjp. Set
B, = 0. Simple algebraic manipulations then lead to

NGC(g;0) = Q(g,0) — Q(G(0,0, 1), 0).

Because ¢ is an interior maximizer of Q(g,0), which is strictly concave in g, it follows
that
Q(g™,0) — Q(G(0,0,1),0) > 0= NGC(¢";0) > 0.
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Given the continuity of all relevant functions, NGC(g"; Br) > 0 for By, > 0 but sufficiently
close to 0.

Result (i) would follow from Lemma 9 if B, = B. The continuity of NGC' then
implies that NGC(¢g"; Br) > 0 whenever By, is sufficiently close to B provided that \ is
sufficiently large and n is sufficiently small. m

More generally, whether NGC (g]i’ ; Br,) > 0 holds or not for intermediate levels of By,
depends on the array (8,U, v, T, f°, B, \,n) that characterizes a society.

Proof of Lemma 9. Recall that ¢" depends on n. We emphasize this fact along this
proof by writing ¢"(n). Furthermore, functions £y and €2 also depend on n. Thus, we will
also explicitly write n as an argument of these two functions.

From Lemma 6 (see subsection IL.2 of this online appendix), G(0, B, \) = I'(0, B) for a
sufficiently large A. Furthermore, I'(0,0) > ¢"(2). Therefore,

G(0,B,\) —g¢N(2) >TI'(0,B) —T'(0,0) >0

for a large . Hence, there exists a number \? (that does not depend on n) such that if
A > X! then

U(0,T(0,B), B) — U(0,¢*(0,0),0) + A[G(0, B, \) — ¢ (2)] >

/B * D,
We use the facts that

U(0,1(0,B),B) — U(0, g*(0,0),0) + A\[G(0, B, \) — ¢™(2)] =
[U(0,I(0, B), B) + AG(0, B, \)] — [U(0, g*(0,0),0) + Ag" (2)]

and G(0, B, \) = T'(0, B) to conclude that

[U(0,G(0, B, ), B) + AG(0, B, \)] = [U(0,47(0,0),0) + Ag"(2)] >
Lﬁ[ (0,9%(0,0),0) — U(B,~,B)] >
% [U(0,9"(n),0) = U(B,7, B)]

for every n. These inequalities imply that there is a number (3, A) with the property that
if n > k(5,)), then

[U(0,G(0, B,\), B) + AG(0, B, \)] — [U(0, g*(0,0),0) + Ag"(2)] >
B

1-5

h

V(0.9 (0).0) = U(B.7.B)] + 125 \P(0.0) = 3]

Combine the last inequality with U(0, g*(0,0),0) > U(0, g™ (n),0) and T'(0,0) > g™ (2) >
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g™ (n) to conclude that

[U(0,G(0, B, \), B) + AG(0, B, \)] = [U(0, 4™ (n),0) + Ag™ (n)] >
s N 5 A 1 p N
S —U(B,v,B)] + ——"— — .
This inequality is equivalent to Q({gs, b1 }20:n) > Qg™ (n),0;n). Thus, if A > A and
n > k(8,)), then (¢™(0,n),0) is not a symmetric political outcome.
Consider inequality (42). We use it to conclude that the policy (¢"(n),0) is an equi-
librium outcome if and only if

NGC(g";n) = Qg™ (n), 05n) = Qo({3s, bes1}i20;n) > 0,
where n as argument of NGC emphasizes that it also depends on n. Now, observe that
Qg™ (N°(B, X)), 0; N°(B, 1)) > Q(g*(0,0),0; N°(5, A))

and
Q(g"(0,0),0; N°(8, X)) = Qo({Ge, bey1}20; N°(B, ).

Thus, NGC(¢"; N°(3,))) > 0. On the other hand, NGC(¢";k(5,)\)) < 0. Hence,
the intermediate value theorem implies that there exists a number N™(3,)\) satisfying
NGC(g"; NY(B,))) = 0.

We still have to show that (¢"(n),0) is a symmetric political outcome if and only if
n < N¥(B,)). Regardless of whether the constraint g™ (n) < T'(0,0) binds or not, it is
possible to show that

ONGC(g";n) BA

Hence, NGC(g";n) > 0 if and only if n < NV (3, \). The same argument establishes that
NGC(gV;n) > 0if n < N¥(5,1). &

IV  An equilibrium set

In this section we characterize a set of static equilibrium outcomes and investigate how
it depends on n and Bj. As discussed in section 5, that dependence is shaped by the
interaction between those two variables.

Recall that inequality (42) defines a necessary and sufficient condition for a policy
{gt, bir1}32, to be an equilibrium outcome when there is no legal constraint on the govern-
ment debt. When there is such a constraint, a sufficient condition for a policy {g:, bi11}52,
to be an equilibrium is

QS({gt7bt+1}tois) Z U(07 G(O7BL7)\)7BL)+)\G(07 BLv)\)+
A
% U(BL, G(By, Bu, A), Br) + ~G(By, Br,A)|
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This inequality is still too open-ended to carry out a sharp analysis of how the interaction
of n and Bj, impacts the sustainability of a given policy. Hence, as in the main text, we
focus on static outcomes here.

To save on notation, denote the right-hand side of the last inequality by R(n, Br).
When its left-hand side is restricted to sequences in which ¢; = g and b,y = 0 for all ¢, it
becomes

where (g, 0) is defined in (43).

Let S(n, Br) be the set of all values of g that satisfy (94). Recall that ¢V is the
maximizer of (g, 0). Hence, no static policy will be sustainable if Q(¢",0) < R(n, By); as
a consequence, S(n, B) = & in that case. If Q(g",0) = R(n, Br), then S(n, B) = {¢"}.
Finally, if Q(¢g",0) > R(n, Br), then S(n, By) = [¢°, ¢"], where ¢g* solves the equation
Q(g*,0) = R(n,Br). Observe that if ¢° > ¢*(0,0), then ¢° = ¢/, which was defined in
subsection 5.2.

We now start to evaluate how changes in n impact S(n, Br). For simplicity, we assume
throughout the remainder of this section that ¢ is an interior maximizer of Q(g,0). For
future reference, observe that

NGC(97 n, BL) = Q(Q? O) - R(”? BL)

NGC(g,n, By) is exactly the net gain from a political compromise defined in section 5.
We add n and By, to the list of arguments to emphasize that NGC' also depends on those
variables.

Consider first the case in which

NGC(g",n,B;) < 0. (95)

That is equivalent to saying that S(n, By) = @. Let NGC,, denote the partial derivative
of NGC with respect to n. We have that

(g™, 0) og™ BA

NGC,(g",n,By) = g  On + (1-0)

n2 [G(BLv By, )‘) - gN]
However, gV is an interior maximizer of ). Therefore, 9(¢g",0)/0g = 0 and

A

TG B ) - o) (96)

Thus, NGC,, (¢, n, Br) will have the same sign as the difference G(By, By, \)—¢”~. Hence,

if G(Br,Br,\) — g™ < 0, then (95) will continue holding after the increase in n, and

S(n, Br) will continue to be empty after such an increase. On the other hand, that set

may become not empty if n decreases. The opposite happens when G(By, B, A) — g~ > 0.
We now turn to the case in which

NGCn(gN, n,Br) =

NGC(g",n,BL) =0, (97)

so that S(n, B) = {¢"}. We again resort to (96). If G(Br,Br,\) — ¢~ > 0, then an
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increase in n will make the left-hand side of (97) larger than its right-hand side. Therefore,
such an increase will expand the set S(n, By). On the other hand, the set will become
empty in n decreases. The opposite happens when G(By, By, \) — ¢~ < 0.

Finally, consider now the case in which NGC(¢g",n, B;) > 0. As pointed out above, in
this case S(n, Br) = [¢9°, ¢"]. Hence, we need to assess the impact of n over both endpoints
of that interval. Consider first g". Since dg"/On < 0, an increase in n will decrease the
value of that endpoint. Concerning ¢°, recall that

Q(g°,0) = R(n, Br) & NGC(g°,n,B) = 0.

Differentiating the last equality with respect to n, we obtain

ONGC d¢° ONGC dg° afGe
+ =0= =— :
dg On on on %
Hence,
dg°® B\ ¢°—G(Br,Br,\)

o (1=Pm2 Qy(g°,0)
Use the facts that € is strictly concave in g, ¢° < ¢" and Q,(¢g",0) = 0 to conclude that

Q,(g°,0) > 0. Thus, 0g°/0n will have the same sign as the difference ¢° — G(By, By, \).
Furthermore, d¢g®/0n is strictly increasing in By,.

The main message from this exercise is that the impact of a change in n on the set
S(n, Br) depends on the value of G(Bp, B, A), which in turn hinges on Bj. The effects
are entirely analogous to those we analyze in section 5 of the main text, underlining that
the set in question depends on the interaction between n and Bj, in a very precise and yet
general way.
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