ANÁLISE MATEMÁTICA PARA ECONOMISTAS: NOTAS DE AULA

Elaboração: Alexandre B. Cunha

Introdução: Lógica e Demonstrações

- Considere a seguinte sentença: se f é diferenciável no ponto \bar{x} , então f é contínua no ponto \bar{x} .
 - Tradeoff entre clareza e elegância.
 - * Se f é diferenciável no ponto \bar{x} , então f é contínua no ponto em questão.
 - Enunciado alternativo.
 - * P: f é diferenciável no ponto \bar{x}
 - * Q: f é contínua no ponto \bar{x}
 - $*P \implies Q$ Lê-se P implica Q.
 - · Exemplo: $x > 10 \implies x > 0$.
 - Atenção: os símbolos "⇒" e "→" possuem significados distintos; é necessário utilizar os símbolos corretos.
- Duas afirmativas R e S são equivalentes quando R implica S e S implica R. Em símbolos, $[R \iff S]$.
 - Exemplo: $a b > 0 \iff a > b$.
 - Se a>0 e b>0, então ab>0. Porém, a implicação oposta não se verifica.
 - * the converse is not true
- Como provar a veracidade de uma afirmativa do tipo $[P \implies Q]$?
 - Há pelo menos três maneiras.

Introdução: Notas de Aula

- 1. Demonstração direta.
 - $*P \Longrightarrow R_1 \Longrightarrow R_2 \Longrightarrow \ldots \Longrightarrow R_n \Longrightarrow Q$
 - * Evidentemente, podem ocorrer variações. Por exemplo: $P \implies R_1$, $P \implies R_2$ e $[(R_1 \& R_2) \implies Q]$.
- 2. Demonstração por contraposição:
 - * Utilize a abordagem direta para mostrar que $[\neg Q \implies \neg P]$.
 - * Suponha que as afirmativas $[P \implies Q]$ e que $\neg Q$ são verdadeiras. O que podemos dizer sobre $\neg P$? Conclusão: as afirmativas $[P \implies Q]$ e $[\neg Q \implies \neg P]$ são equivalentes.
 - * Exemplos: $[x > 2 \implies x > 0]$ e $[x \le 0 \implies x \le 2]$; Alexandre nasceu no Rio de Janeiro implica que Alexandre nasceu no Brasil e Alexandre não nasceu no Brasil implica que Alexandre não nasceu no Rio de Janeiro.
- 3. Demonstração por contradição (ou absurdo).
 - * Assuma que $[P \& \neg Q]$ é verdade e obtenha uma contradição.
 - * Contradição a um fato conhecido ou a alguma conclusão obtida ao longo do seu argumento.
 - * Primeiro Teorema do Bem-Estar Social.

Exemplo $[x > 1 \implies x^2 > 1]$.

Prova direta: Como $x>1,\,x^2>x.$ Combine essas duas desigualdades para concluir que $x^2>1.$

Comentário: o símbolo de Halmos \square denota o fim de uma demonstração (retângulo cheio no livro do Paul Halmos).

Dica: não questione o porquê de cada passo; questione a sua correção.

Prova por contraposição: Assuma que $x^2 \le 1$; desta forma, $x^2 - 1 \le 0$. Utilize a última desigualdade para concluir que $(x-1)(x+1) \le 0$. Assim sendo, $x-1 \le 0$ ou $x+1 \le 0$. Se a primeira dessas duas desigualdades se verifica, então $x \le 1$. Por outro lado, se $x+1 \le 0$, então $x \le -1 \le 1$.

Comentário: significado de "ou". Inglês: or (ou) e either...or (ou...ou).

Prova por contradição: Suponha que x > 1 e $x^2 \le 1$. Como -x < -1, $x^2 - x < 0$. A última desigualdade implica que x(x-1) < 0. Logo, x < 0 ou x < 1. Contudo, qualquer uma das duas últimas desigualdades contradiz a hipótese de que x > 1.

Comentário: também se poderia afirmar que a expressão x(x-1) < 0 contradiz o fato de que o produto de dois números positivos é positivo.

Introdução: Notas de Aula

Atenção É preciso utilizar "texto". Compare a prova por contradição com o rascunho que se segue.

$$x > 1$$
 $x^2 \le 1$
 $-x < -1 \implies x^2 - x < 0 \implies x(x-1) < 0$
 $x < 0 \qquad x < 1$ absurdo!

Vale ressaltar que as expressões matemáticas precisam respeitar as regras de pontuação. Considere o exemplo abaixo.

Exemplo Fix π^e . Observe that for all $\pi \neq \pi^*$,

$$U(\pi^{e}, \pi) = W(\pi^{e}, \pi) - C \le W(\pi^{e}, f(\pi^{e})) - C \le U(\pi^{e}, f(\pi^{e})) \Longrightarrow U(\pi^{e}, \pi) \le \max\{U(\pi^{e}, f(\pi^{e})), U(\pi^{e}, \pi^{*})\}.$$
(1)

Since $U(\pi^e, \pi^*) \leq \max\{U(\pi^e, f(\pi^e)), U(\pi^e, \pi^*)\}$, (1) holds for all $\pi \in \mathcal{A}$.

Atenção Você não deve decorar o texto utilizado pelo seu professor! Considere a seguinte questão (P2 2021):

Considere a sequência de números reais definida recursivamente por $z_1 = 80$ e

$$z_{n+1} = \frac{1}{4}z_n + 12 .$$

Prove que (z_n) é convergente e calcule o seu limite. Resposta Seja P(n) a afirmativa

$$0 < z_{n+1} < z_n < 80.$$

Utilizaremos o Princípio da Indução para mostrar que ela é verdadeira para todo $n \in \mathbb{N}$. Como $z_1 = 80$ e $z_2 = 32$, P(1) é verdadeira. Agora, assuma que P(n) se verifique. Logo,

$$0 \leq \frac{1}{4}z_{n+1} \leq \frac{1}{4}z_n \leq 20 \implies 12 \leq \frac{1}{4}z_{n+1} + 12 \leq \frac{1}{4}z_n + 12 \leq 32 \implies 12 \leq z_{n+2} \leq z_{n+1} \leq 32 \implies 0 \leq z_{n+2} \leq z_{n+1} \leq 80.$$

Tendo em vista que P(n) é verdadeira para todo $n \in \mathbb{N}$, concluímos que (z_n) é decrescente e limitada. Logo, ela é convergente. Por fim, denote o seu limite por z. Desta forma,

$$z = \frac{1}{4}z + 12 \implies \frac{3}{4}z = 12 \implies z = 16.$$

• A expressão "se e somente se".

Introdução: Notas de Aula

- P se e somente se Q significa $[P \iff Q]$.
 - * Formulação alternativa: P é necessária e suficiente para Q.
 - * Parte "se" (necessidade ou condição necessária): $[Q \implies P]$.
 - * Parte "somente se" (suficiência ou condição suficiente): $[P \implies Q]$.
- Inglês: if and only if ou iff (jargão matemático; Halmos mais uma vez).
- Sugestão: faça a prova de uma afirmativa do tipo "se e somente se" por partes. Primeiro mostre que $[P \implies Q]$ e depois prove $[Q \implies P]$.
- Comentário: uso da expressão "se" (if) em definições.

Exercício Considere a equação $x^2 + 1 = 0$. Não há solução (real). Agora, considere o seguinte esboço

$$x^{2} + 1 = 0$$

$$(x^{2} - 1)(x^{2} + 1) = 0$$

$$x^{4} - 1 = 0$$

$$x = 1$$

Evidentemente, há um problema. Qual é? Dica: " \Longleftrightarrow vs. \implies " ao passar da primeira para a segunda linha.a