ANÁLISE MATEMÁTICA PARA ECONOMISTAS: NOTAS DE AULA

Este documento consiste em notas de aula para o Capítulo 3 de Bartle & Sherbert (*Introduction to Real Analysis.* 3ª edição. Nova Iorque: John Wiley & Sons, 2000).

Elaboração: Alexandre B. Cunha

3 Sequências e Séries

3.1 Sequências e Seus Limites

Definição 3.1.1 Uma sequência de números reais (ou uma sequência em \mathbb{R}) é uma função definida em \mathbb{N} e com imagem contida em \mathbb{R} .

Ou seja, uma sequência em \mathbb{R} associa a cada número natural um número real. Dada uma sequência $X: \mathbb{N} \to \mathbb{R}$, o valor X(n) será denotado por x_n . Essa sequência será frequentemente denotada, no livro-texto, por X, (x_n) ou $(x_n: n \in \mathbb{N})$; outros livros: $\{x_n\}_{n=1}^{\infty}$. Vale ressaltar que, ao contrário do que ocorre em um conjunto, é preciso listar os termos na ordem original e não omitir as repetições. Exemplos: $\{(-1)^n: n \in \mathbb{N}\} = \{-1,1\} = \{1,-1\}$; $((-1)^n: n \in \mathbb{N}) = (-1,1,-1,1,\cdots)$.

Uma sequência pode ser definida através da especificação de uma fórmula para x_n . Exemplo: $x_n = 2n$. Ela também pode ser definida indutivamente (recursivamente). Exemplos: $x_1 = 1$, $x_{n+1} = x_n + 3$; $x_1 = 0$, $x_2 = 3$, $x_{n+2} = x_{n+1} - x_n$.

Exemplos 3.1.2 (a) Se $b \in \mathbb{R}$, então $B = (b, b, b, \cdots)$ é a sequência constante b.

- (b) Se $b \in \mathbb{R}$, então $B = (b^n)$ é a sequência $(b, b^2, b^3, \dots, b^n, \dots)$.
- (c) A sequência X que lista todos os números pares em ordem crescente pode ser definida pela fórmula $x_n = 2n$ ou indutivamente de acordo com $x_1 = 2$, $x_{n+1} = x_n + 2$.
- (d) A conhecida sequência de Fibonacci F é definida indutivamente de acordo com $f_1 = 1, f_2 = 1, f_{n+1} = f_{n-1} + f_n$.

O Limite de uma Sequência

Há vários conceitos de *limite* em Análise. O mais básico deles é o de limite de uma sequência.

Definição 3.1.3 Uma sequência $X = (x_n)$ em \mathbb{R} converge para $x \in \mathbb{R}$, ou x é dito ser o limite de (x_n) , se para todo $\varepsilon > 0$ existir um número natural $K(\varepsilon)$ tal que $|x_n - x| < \varepsilon$ para todo $n \geq K(\varepsilon)$. Se uma sequência tem limite, então ela dita ser convergente; caso contrário, ela é dita ser **divergente**.

Comentário Utiliza-se a notação $K(\varepsilon)$ para enfatizar que K depende de ε . Frequentemente o ε é omitido.

As notações $\lim X = x$, $\lim(x_n) = x$ e $x_n \to x$ serão utilizadas para expressar o fato de que o número real x é o limite da sequência X. Outros livros: $\lim_{n\to\infty} x_n = x$ e $\lim x_n = x$.

• Troca de ordem na exposição; anteciparemos um comentário (remark), alguns exemplos e o jogo $K(\varepsilon)$.

Comentário A Definição 3.1.3 nada diz sobre como identificar o valor do limite. Usualmente é preciso fazer uma conjectura sobre o valor do limite e seguida verificar se a definição é satisfeita.

Nos exemplos abaixo, adotaremos a seguinte abordagem: inicialmente, utilizaremos a desigualdade $|x_n - x| < \varepsilon$ para obter um "candidato a $K(\varepsilon)$ "; feito isso, verificaremos se a nossa conjectura está correta.

Exemplos 3.1.6 (a) $\lim(1/n) = 0$

Rascunho: queremos $|1/n - 0| < \varepsilon$.

$$\left| \frac{1}{n} - 0 \right| < \varepsilon \iff \frac{1}{n} < \varepsilon \iff n > \frac{1}{\varepsilon}$$

Candidato: $K(\varepsilon)$ é igual ao menor (ou qualquer ao invés de menor) natural maior que $1/\varepsilon$. Resposta: Seja $K(\varepsilon)$ o menor natural maior que $1/\varepsilon$. Observe que

$$n \ge K(\varepsilon) \implies n > \frac{1}{\varepsilon} \implies \frac{1}{n} < \varepsilon \implies \left| \frac{1}{n} - 0 \right| < \varepsilon.$$

(b) $\lim \left(\frac{1}{n^2+1}\right) = 0$ Rascunho

$$\left| \frac{1}{n^2 + 1} - 0 \right| < \varepsilon \iff \frac{1}{n^2 + 1} < \varepsilon \iff n^2 + 1 > \frac{1}{\varepsilon} \iff n^2 > \frac{1}{\varepsilon} \iff n > \frac{1}{\sqrt{\varepsilon}}$$

Resposta: Seja $K(\varepsilon)$ o menor natural maior que $1/\sqrt{\varepsilon}$. Observe que

$$n \ge K(\varepsilon) \implies n > \frac{1}{\sqrt{\varepsilon}} \implies n^2 > \frac{1}{\varepsilon} \implies$$

$$n^2 + 1 > \frac{1}{\varepsilon} \implies \frac{1}{n^2 + 1} < \varepsilon \implies \left| \frac{1}{n^2 + 1} - 0 \right| < \varepsilon.$$

Vale ressaltar que os autores utilizam o fato de que $n^2 \ge n$ para utilizar $1/\varepsilon$ ao invés de $1/\sqrt{\varepsilon}$.

 (\mathbf{c}) $\lim \left(\frac{3n+2}{n+1}\right) = 3$

Inicialmente, observe que

$$\left| \frac{3n+2}{n+1} - 3 \right| = \frac{1}{n+1}.$$

Rascunho

$$\frac{1}{n+1} < \varepsilon \iff n+1 > \frac{1}{\varepsilon} \iff n > \frac{1}{\varepsilon}$$

Resposta: Seja $K(\varepsilon)$ o menor natural maior que $1/\varepsilon$. Observe que

$$n \ge K(\varepsilon) \implies n > \frac{1}{\varepsilon} \implies n+1 > \frac{1}{\varepsilon} \implies \frac{1}{n+1} < \varepsilon.$$

(d) Se 0 < b < 1, então $\lim(b^n) = 0$. Rascunho (Lembre que $\ln b < 0$.)

$$b^n < \varepsilon \iff \ln(b^n) < \ln \varepsilon \iff n \ln b < \ln \varepsilon \iff n > \frac{\ln \varepsilon}{\ln b}$$

Resposta: Seja $K(\varepsilon)$ o menor natural maior que $\ln \varepsilon / \ln b$. Desta forma,

$$n \ge K(\varepsilon) \implies n > \frac{\ln \varepsilon}{\ln b} \implies n \ln b < \ln \varepsilon \implies \ln(b^n) < \ln \varepsilon \implies b^n < \varepsilon \implies |b^n - 0| < \varepsilon. \square$$

Exemplos adicionais (sequências divergentes) Para estabelecer que uma sequência é divergente, é preciso mostrar que, para todo $x \in \mathbb{R}$, existe $\varepsilon > 0$ tal que para todo $K \in \mathbb{N}$, $|x_n - x| \ge \varepsilon$ para algum $n \ge K$.

(1) $x_n = n^2$

Seja x um número real. Suponha que $x \leq 0$. [Ilustrar na linha reta] Observe que $n^2 - x \geq 1 - x \geq 1$. Logo, $|n^2 - x| \geq 1$ para todo n. Desta forma, (x_n) não pode convergir para x. Agora assuma que x > 0. [Ilustrar na linha reta]. Observe que

$$n \ge \sqrt{\varepsilon + x} \implies n^2 \ge \varepsilon + x \implies n^2 - x \ge \varepsilon > 0 \implies |n^2 - x| \ge \varepsilon.$$

Assim sendo, $|n^2 - x| \ge \varepsilon$ para todo $n \ge \sqrt{\varepsilon + x}$. Mais uma vez, (x_n) não pode convergir para x. Comentário: razão para "quebrar" em dois casos: $\varepsilon + x$ pode ser negativo.

(2)
$$y_n = (-1)^n$$

Mostraremos mais à frente (Teorema 3.1.4) que uma sequência não pode ter dois (ou mais) limites.

[Desenhar a linha reta e discutir a abordagem. Ponto central: y "próximo" de y_{2n} fica "longe" de y_{2n+1}].

Seja y um número real qualquer. Faça $\varepsilon = 1/2$. Se $|y_{2n} - y| \ge 1/2$ para algum n, então a mesma designaldade se verifica para todo n (razão). Suponha agora que $|y_{2n} - y| < 1/2$ para todo n. Assim sendo,

$$|1-y| < \frac{1}{2} \implies -\frac{1}{2} < 1-y < \frac{1}{2} \implies 1-y < \frac{1}{2} \implies y-1 > -\frac{1}{2} \implies y+1 > \frac{3}{2} \ge \frac{1}{2} \implies y-y_{2n+1} \ge \frac{1}{2} \implies |y_{2n+1}-y| \ge \frac{1}{2}.$$

Logo, Y é divergente.

Comentário: o Jogo $K(\varepsilon)$

- (1) O jogador A afirma que x é o limite de (x_n) .
- (2) O jogador B desafia A enunciando um valor para ε .
- (3) A precisa achar $K(\varepsilon)$ com a propriedade especificada na Definição 3.1.3.

Se A sempre conseguir achar $K(\varepsilon)$, então ele vence o jogo. Para que B vença o jogo, ele precisa enunciar um ε tal que o jogador A não consiga achar um $K(\varepsilon)$ adequado.

Teorema 3.1.4 (Unicidade do Limite) Uma sequência em \mathbb{R} pode ter no máximo um limite.

Prova. Suponha que ambos x' e x'' sejam limites de uma sequência (x_n) . Desta forma, para cada $\varepsilon > 0$ existem números naturais K' e K'' tais que $|x_n - x'| < \varepsilon/2$ para $n \ge K'$ e $|x_n - x''| < \varepsilon/2$ para $n \ge K''$. Defina $K = \max\{K', K''\}$. Podemos então aplicar a Desigualdade Triangular para concluir que, para $n \ge K$,

$$|x' - x''| = |x' - x_n + x_n - x''| \le |x' - x_n| + |x_n - x''| \le \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Como $\varepsilon > 0$ é um número positivo arbitrário, |x' - x''| = 0. Assim sendo, x' = x''.

Capítulo 2: o conjunto $V_{\varepsilon}(x)=\{u\in\mathbb{R}:|u-x|<\varepsilon\}$ é uma vizinhança- ε de x.

Teorema 3.1.5 Sejam X uma sequência em \mathbb{R} e x um número real. As afirmativas que se seguem são equivalentes.

- (a) X converge para x.
- (b) Para todo $\varepsilon > 0$, existe $K(\varepsilon) \in \mathbb{N}$ tal que $|x_n x| < \varepsilon$ para todo $n \ge K(\varepsilon)$.
- (c) Para todo $\varepsilon > 0$, existe $K(\varepsilon) \in \mathbb{N}$ tal que $x \varepsilon < x_n < x + \varepsilon$ para todo $n \ge K(\varepsilon)$.
- (d) Para toda vizinhança- ε de x, existe $K(\varepsilon) \in \mathbb{N}$ tal que $x_n \in V_{\varepsilon}(x)$ para todo $n \geq K(\varepsilon)$.

Prova (esboço). $[(a) \iff (b)]$ Definição 3.1.3.

[(b)
$$\iff$$
 (c)] $|x_n - x| < \varepsilon \iff -\varepsilon < x_n - x < \varepsilon \iff x - \varepsilon < x_n < x + \varepsilon$

$$[(d) \iff (b)] \quad x_n \in V_{\varepsilon}(x) \iff |x_n - x| < \varepsilon$$

Caudas de Sequências _

A convergência (ou divergência) de uma sequência X depende somente dos seus "termos finais". Ou seja, se cortarmos ou modificarmos os $m \in \mathbb{N}$ termos iniciais de X, nenhuma conclusão referente a sua convergência (ou divergência) será afetada.

Definição 3.1.8 Se X é uma sequência em \mathbb{R} e m é um número natural, então a caudam de X é a sequência

$$X_m = (x_{m+n} : n \in \mathbb{N}) = (x_{m+1}, x_{m+2}, \cdots).$$

Por exemplo, se $X=(2,4,6,8,10,\cdots,2n,\cdots)$, então a cauda-3 de X é a sequência $X_3=(8,10,12,\cdots,2n+6,\cdots)$.

Teorema 3.1.9 Sejam X uma sequência em \mathbb{R} e m um número natural. A cauda-m de X converge se e somente X converge. Nesse caso, $\lim X_m = \lim X$.

Exemplos Adicionais

Ao estudarmos a convergência de uma sequência, muitas vezes é conveniente simplificar a expressão $|x_n - x|$ (inclusive nós já procedemos dessa forma). O próximo teorema formaliza uma dessas possíveis simplificações.

Teorema 3.1.10 Sejam (x_n) uma sequência em \mathbb{R} e x um número real. Se (a_n) é uma sequência de reais positivos tal que $\lim(a_n) = 0$ e se para alguma constante C > 0 e algum $m \in \mathbb{N}$ a condição $|x_n - x| \leq Ca_n$ for respeitada para todo $n \geq m$, então $\lim(x_n) = x$.

Prova. Fixe $\varepsilon > 0$. Como $\lim(a_n) = 0$, existe $K(\varepsilon/C)$ tal

$$n \ge K(\varepsilon/C) \implies a_n = |a_n - 0| < \varepsilon/C.$$

Logo, para $n \ge \max\{K(\varepsilon/C), m\}$, temos

$$|x_n - x| \le Ca_n < C\frac{\varepsilon}{C} = \varepsilon. \ \Box$$

Observe que C não pode depender de n.

Exemplos 3.1.11 (a) Se a > 0, então $\lim_{n \to \infty} \left(\frac{1}{1+na}\right) = 0$. Observe que

$$a > 0 \implies 0 < na < 1 + na \implies \frac{1}{1 + na} < \frac{1}{na}$$

Desta forma,

$$\left| \frac{1}{1+na} - 0 \right| = \frac{1}{1+na} \le \left(\frac{1}{a} \right) \frac{1}{n}$$

para todo $n \in \mathbb{N}$. Como $\lim(1/n) = 0$, é possível aplicar (3.1.10); para tanto, faça C = 1/a e m = 1. Isso nos permite concluir que $\lim \left(\frac{1}{1+na}\right) = 0$. (b) e (c) Ler.

3.2 Teoremas sobre Limites

Nesta seção nós obteremos resultados que nos permitirão avaliar os limites de algumas sequências.

Definição 3.2.1 Uma sequência X em \mathbb{R} é **limitada** se existir $M \in \mathbb{R}$ tal que $|x_n| \leq M$ para todo $n \in \mathbb{N}$.

- As palavras limitada e convergente não possuem o mesmo significado.
 - Limitada e bounded vs. convergente e convergent.
- Importante: é um erro sério afirmar que [ditar].

Teorema 3.2.2 Se uma sequência X em \mathbb{R} é convergente, então X é limitada.

Prova. Seja X uma sequência convergente e x o seu limite. Observe que existe $K \in \mathbb{N}$ tal que, para todo $n \geq K$,

$$|x_n - x| < 1 \implies |x_n - x| + |x| < 1 + |x| \implies |x_n| < 1 + |x|.$$

Defina M de forma que

$$M = \max\{|x_1|, |x_2|, \cdots, |x_{K-1}|, 1+|x|\}.$$

Tendo em vista que $|x_n| \leq M$ para todo $n \in N, X$ é limitada.

Dada duas sequências X e Z, define-se a soma delas por $X+Z=(x_n+z_n)$. A diferença X-Z, a multiplicação $X\cdot Z$ e a divisão X/Z são definidas de forma similar; evidentemente, no caso da última operação é necessário que $z_n\neq 0$ para todo n.

Comentário (Troca de Ordem de Operações) Sejam X e Z duas sequências convergentes e x e z os seus respectivos limites. Será que $\lim(x_n+z_n)=\lim(x_n)+\lim(z_n)$? Observe a troca da ordem das operações "+" e "lim".

Teorema 3.2.3 (a) Sejam X e Y sequências de números reais que convergem, respectivamente, para x e y e c um número real. As sequências X + Y, X - Y, $X \cdot Y$ e cX convergem, respectivamente, para x + y, x - y, xy e cx.

(b) Se X converge para $x \in Z$ é uma sequência de reais, todos diferentes de 0, que converge para $z \neq 0$, então $\lim (x_n/z_n) = x/z$.

Prova das partes referentes a soma e a multiplicação. Considere inicialmente a soma. Como X e Y são convergentes, existem números naturais $K_x(\varepsilon/2)$ e $K_y(\varepsilon/2)$ tais que, para todo $n \ge \max\{K_x(\varepsilon/2), K_y(\varepsilon/2)\}$, $|x_n - x| < \varepsilon/2$ e $|y_n - y| < \varepsilon/2$. Defina $K(\varepsilon) = \max\{K_x(\varepsilon/2), K_y(\varepsilon/2)\}$, some as duas últimas desigualdade membro a membro e aplique a desigualdade triangular para concluir que $|(x_n + y_n) - (x + y)| < \varepsilon$ para todo $n \ge K(\varepsilon)$. Logo, X + Y converge para x + y.

No tocante à multiplicação, observe que

$$|x_{n}y_{n} - xy| = |(x_{n}y_{n} - x_{n}y) + (x_{n}y - xy)| \le |x_{n}y_{n} - x_{n}y| + |x_{n}y - xy| = |x_{n}||y_{n} - y| + |x_{n} - x||y| \Longrightarrow |x_{n}y_{n} - xy| \le |x_{n}||y_{n} - y| + |x_{n} - x||y|.$$
(3.1)

Como X é convergente, ela também é limitada. Logo, existe $M_1 \in \mathbb{R}$ tal que $|x_n| \leq M_1$ para todo n. Defina $M = \max\{M_1, |y|\}$. Assim sendo, (3.1) implica que

$$|x_n y_n - xy| \le M|y_n - y| + M|x_n - x|.$$

Utilize o fato de que X e Y são convergentes para concluir que existe um número natural $K(\varepsilon)$ com a propriedade de que, para todo $n \geq K(\varepsilon)$,

$$|x_n y_n - xy| < M \frac{\varepsilon}{2M} + M \frac{\varepsilon}{2M} = \varepsilon. \square$$

Outros itens Para a diferença, defina Z = -Y e aplique um dos resultados anteriores à soma X + Z. Para cX, defina $y_n = c$ para todo n e aplique um dos resultados anteriores ao produto $X \cdot Y$. Para a divisão, defina $y_n = 1/z_n$, mostre que $\lim(y_n) = 1/z$ e aplique ao produto $X \cdot Y$.

É possível utilizar o Princípio da Indução para generalizar último teorema para operações com $m \in \mathbb{N} \setminus \{1\}$ sequências.

Teorema 3.2.4 Seja X uma sequência convergente. Se $x_n \geq 0$ para todo $n \in \mathbb{N}$, então $\lim (x_n) \geq 0$.

Comentário Enunciado ligeiramente distinto do livro.

Prova. A demonstração será feita por contraposição. Denote o limite de (x_n) por x. Suponha que x < 0 e faça $\varepsilon = -x$ na definição de limite. Logo, para m suficientemente grande,

$$|x_m - x| < -x \implies x_m - x < -x \implies x_m < 0.$$

Contudo, a última desigualdade contradiz a hipótese de que $x_n \geq 0$ para todo n. \square

Teorema 3.2.5 Sejam X e Y duas sequências convergentes. Se $x_n \leq y_n$ para todo $n \in \mathbb{N}$, então $\lim(x_n) \leq \lim(y_n)$.

Prova (esboço). Defina Z = Y - X e aplique os dois últimos teoremas.

• Não é possível substituir " \leq " por "<". Exemplo: $x_n = 1/(n+1)$ e $y_n = 1/n$.

Teorema 3.2.6 Seja X uma sequência convergente. Se $a \leq x_n \leq b$ para todo $n \in \mathbb{N}$, então $a \leq \lim(x_n) \leq b$.

Teorema 3.2.7 (Sanduíche) Sejam $X, Y \in Z$ três sequências em \mathbb{R} com a propriedade de que $\lim(x_n) = \lim(z_n)$. Se $x_n \leq y_n \leq z_n$ para todo $n \in \mathbb{N}$, então Y converge para o mesmo limite que as outras duas sequências.

Prova. Denote $\lim(x_n)$ e $\lim(z_n)$ por w. Fixe $\varepsilon > 0$. Como X e Z convergem, existe $K(\varepsilon)$ tal que

$$|x_n - w| < \varepsilon \& |z_n - w| < \varepsilon \implies -\varepsilon < x_n - w \& z_n - w < \varepsilon$$

para todo $n \geq K(\varepsilon)$. Adicionalmente, $x_n - w \leq y_n - w \leq z_n - w$ para todo n. Assim sendo,

$$-\varepsilon < y_n - w < \varepsilon \implies |y_n - w| < \varepsilon$$

para todo $n \geq K(\varepsilon)$.

Exemplos 3.2.8 (a) A sequência (n) é divergente.

De fato, se essa sequência fosse convergente, então ela seria limitada. Contudo, isso contradiz o fato de que o conjunto dos naturais é ilimitado.

(b) A sequência $((-1)^n)$ é divergente; detalhes no livro; já discutida neste documento.

(c)
$$\lim \left(\frac{2n+1}{n}\right) = 2$$

$$\frac{2n+1}{n} = 2 + \frac{1}{n}$$

Aplicar teorema 3.2.3(a).

(d)
$$\lim \left(\frac{2n+1}{n+5} \right) = 2$$

$$\frac{2n+1}{n+5} = \frac{2+1/n}{1+5/n}$$

Aplicar teorema 3.2.3(b); $x_n = 2 + 1/n$ e $z_n = 1 + 5/n$.

(f) $\lim \left(\frac{\sin n}{n}\right)$

$$-\frac{1}{n} \le \frac{\sin n}{n} \le \frac{1}{n}$$

Aplicar Teorema do Sanduíche.

(g) Se p(t) é um polinômio e $\lim(x_n) = x$, então $\lim(p(x_n)) = p(x)$; tratar cada termo do polinômio como uma sequência.

Teorema 3.2.9 Seja X uma sequência. Se $\lim(x_n) = x$, então $\lim(|x_n|) = |x|$.

Prova (esboço). Utilize o fato de que
$$||x_n| - |x|| \le |x_n - x|$$
.

Não é correto dizer que a convergência de $(|x_n|)$ implica a convergência de (x_n) . Exemplo: $x_n = (-1)^n$.

Teorema 3.2.10 Seja X uma sequência de números reais não negativos. Se $\lim(x_n) = x$, então $\lim(\sqrt{x_n}) = \sqrt{x}$.

Teorema 3.2.11 Seja X uma sequência de números reais positivos tal que $\lim_{n \to \infty} \left(\frac{x_{n+1}}{x_n} \right) = L$. Se L < 1, então $\lim_{n \to \infty} (x_n) = 0$.

3.3 Sequências Monótonas

Definição 3.3.1 Uma sequência X de números reais é dita ser **crescente** se

$$x_1 < x_2 < \dots < x_n < x_{n+1} < \dots$$

decrescente se

$$x_1 \ge x_2 \ge \cdots \ge x_n \ge x_{n+1} \ge \cdots$$

e monótona se ela for crescente ou decrescente.

Teorema 3.3.2 (Convergência Monótona) Uma sequência monótona é convergente se e somente se ela é limitada. Adicionalmente,

- (a) Se X é crescente e limitada, então $\lim(x_n) = \sup\{x_n : n \in \mathbb{N}\}.$
- (b) Se Y é decrescente e limitada, então $\lim(y_n) = \inf\{y_n : n \in \mathbb{N}\}.$

Prova. A nossa prova será mais longa do que a do livro. Considere as sete afirmativas enunciadas abaixo, onde Z é uma sequência genérica.

P: Z é monótona.

 P_1 : Z é crescente.

 P_2 : Z é decrescente.

Q: Z é convergente.

 Q_1 : $\lim(z_n) = \sup\{z_n : n \in \mathbb{N}\}.$

 $Q_2: \lim(z_n) = \inf\{z_n : n \in \mathbb{N}\}.$

R: Z é limitada.

Dito isto, nós precisamos provar que: (i) $[P \& Q \implies R]$; (ii) $[P \& R \implies Q]$; (iii) $[P_1 \& R \implies Q_1]$; (iv) $[P_2 \& R \implies Q_2]$. Começaremos por (i). Contudo, essa afirma- tiva é uma consequência imediata do Teorema 3.2.2. Com relação à implicação (ii), é suficiente estabelecer que (iii) e (iv) são verdadeiras.

Considere a afirmativa (iii). Assuma que P_1 e R são verdadeiras. Logo, existe $M \in \mathbb{R}$ tal que $z_n \leq M$ para todo n; consequentemente, o conjunto $\{z_n : n \in \mathbb{N}\}$ possui um supremo \bar{z} . Mostraremos que $\lim(z_n) = \bar{z}$. Seja ε um real positivo. Pela propriedades do supremo, sabemos que existe $K \in \mathbb{N}$ tal que $\bar{z} - \varepsilon < z_K$. Utilize o fato de que Z é crescente para concluir que

$$\bar{z} - \varepsilon < z_K \le z_n, \, \forall n \ge K.$$
 (3.2)

Adicionalmente, $z_n < \bar{z} + \varepsilon$ para todo n. Combine esse último fato com (3.2) para concluir que, para todo $n \geq K$,

$$\bar{z} - \varepsilon < z_n < \bar{z} + \varepsilon \implies -\varepsilon < z_n - \bar{z} < \varepsilon \implies |z_n - \bar{z}| < \varepsilon.$$

Logo, $\lim(z_n) = \bar{z}$.

Para estabelecer a veracidade de (iv), defina X = -Z. Observe que X é crescente e limitada. Logo, (iii) implica que $\lim(x_n) = \sup\{x_n : n \in \mathbb{N}\}$. Aplique o Teorema 3.2.3(a) para concluir que $\lim(z_n) = -\sup\{x_n : n \in \mathbb{N}\}$. Assim sendo, resta mostrar que $\inf\{z_n : n \in \mathbb{N}\} = -\sup\{x_n : n \in \mathbb{N}\}$. Observe que

$$x_m \le \sup\{x_n : n \in \mathbb{N}\} \implies z_m = -x_m \ge -\sup\{x_n : n \in \mathbb{N}\}.$$

Logo, $-\sup\{x_n : n \in \mathbb{N}\}$ é uma cota inferior para $\{z_n : n \in \mathbb{N}\}$. Agora, seja u um real tal $u > -\sup\{x_n : n \in \mathbb{N}\}$. Logo, $-u < \sup\{x_n : n \in \mathbb{N}\}$. Desta forma, existe um natural k tal que

$$-u < x_k = -z_k \implies z_k < u.$$

Assim sendo, u não é uma cota inferior de Z. Concluímos então que $-\sup\{x_n : n \in \mathbb{N}\}$ é a maior cota inferior de Z.

Exemplos 3.3.3 (a) $y_n = \frac{1}{\sqrt{n}}$

É possível utilizar o fato que $\lim(1/n) = 0$ e o Teorema 3.2.10 para concluir que $\lim(y_n) = 0$. Alternativamente, é possível utilizar o Teorema 3.3.2, pois $0 \le y_n \le 1$ e $y_n \ge y_{n+1}$

para todo n. Logo, é suficiente estabelecer que $\inf\{y_n : n \in N\} = 0$. (b) Seja X a sequência definida por

$$x_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}.$$

Como $x_{n+1} = x_n + \frac{1}{n+1}$, X é crescente. Desta forma, a questão de ela ser ou não convergente se resume ao fato de ela ser ou não limitada. Como $x_{50.000} \cong 11$, $4 e x_{100.000} \cong 12$, 1, ela parece ser limitada; por exemplo, talvez 20 seja uma cota superior. A despeito disso, mostraremos que ela não é limitada (logo, ela é divergente). Observe que

$$x_{2^{n}} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{2^{n} - 1} + \frac{1}{2^{n}} \Longrightarrow$$

$$x_{2^{n}} = 1 + \left(\frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{4}\right) +$$

$$\left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \dots + \left(\frac{1}{2^{n-1} + 1} + \dots + \frac{1}{2^{n}}\right).$$

$$(3.3)$$

Dito isto, cada um dos termos entre parênteses é maior ou igual que 1/2; vale ressaltar que a soma no último par de parênteses à direita contém 2^{n-1} termos, pois $2^n - 2^{n-1} = 2^{n-1}$ e

$$\frac{1}{2^{n-1}+1}+\dots+\frac{1}{2^n}>\frac{2^{n-1}}{2^n}=\frac{1}{2}.$$

Ademais, o lado direito da igualdade (3.3) contém n termos entre parênteses. Para chegar a essa conclusão, observe que $2 = 2^1$, $4 = 2^2$, $8 = 2^3$ e, evidentemente, $2^n = 2^n$. Dito isto, podemos concluir que

$$x_{2^n} \ge 1 + \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2},$$

sendo que fração 1/2 aparece n vezes na expressão acima. Logo,

$$x_{2^n} \ge 1 + \frac{n}{2}.$$

A última desigualdade implica que X é ilimitada.

As sequências definidas indutivamente precisam ser tratadas de forma distinta. Em particular, caso se saiba que uma sequência desse tipo é convergente, então talvez o valor do seu limite possa ser obtido a partir da relação indutiva que define a sequência. Por exemplo, **suponha** que se estabeleceu que a sequência X definida por $x_{n+1} = 2 + 1/x_n$ e $x_1 = 2$ é convergente. Observe que $x_n > 0$ para todo n (é possível mostrar isso por

indução). Isso também implica que $x_n \ge 2$ para todo n. Logo, $x \ge 2$, onde $x = \lim(x_n)$. Utilize o fato de que $\lim(x_{n+1}) = \lim(x_n)$ para concluir que

$$x = 2 + \frac{1}{x} \implies x^2 - 2x - 1 = 0.$$

Como x não pode ser negativo, $x = 1 + \sqrt{2}$. Vale ressaltar que X não é monótona.

Não se pode simplesmente assumir a convergência. A título de ilustração, considere a sequência Y dada por $y_{n+1} = 2y_n + 1$, $y_1 = 1$. Claramente, $y_n > 0$ para todo n. Suponha agora que Y converge para y. Desta forma, y = 2y + 1, o que implica que y = -1. Contudo, essa conclusão é inconsistente com o fato de que $y_n > 0$ para todo n. O problema é que Y é ilimitada (logo, ela é divergente).

Exemplos 3.3.4 (a) Seja Y a sequência definida por $y_1 = 1$ e $y_{n+1} = \frac{1}{4}(2y_n + 3)$. Mostraremos (esboço) que $\lim Y = 3/2$.

(i) $y_n < 2 \ \forall n$

 $y_1 = 1 < 2$

$$y_n < 2 \implies 2y_n < 4 \implies 2y_n + 3 < 7 \implies y_{n+1} = \frac{1}{4}(2y_n + 3) < \frac{7}{4} < 2$$

(ii) Y é crescente

$$1 = y_1 < y_2 = \frac{5}{4}$$

$$y_n < y_{n+1} \implies \frac{1}{4}(2y_n + 3) < \frac{1}{4}(2y_{n+1} + 3) \implies y_{n+1} < y_{n+2}$$

(iii) Y é limitada, pois $y_1 \le y_n < 2$ para todo n.

A convergência de Y decorre de (ii) e (iii). Denote $\lim Y$ por y.

$$y = \frac{1}{4}(2y+3) \implies 4y = 2y+3 \implies y = \frac{3}{2}$$

(b) Seja Z a sequência definida por $z_1 = 1$ e $z_{n+1} = \sqrt{2z_n}$. Mostraremos (esboço) que $\lim Z = 2$.

$$z_1 = 1 < 2$$
 $z_2 = \sqrt{2} \cong 1,41 < 2$ $z_3 = \sqrt{2z_2} \cong 1,68$ $z_4 = \sqrt{2z_3} \cong 1,83$ $1 \le z_1 \le z_2 \le z_3 \le z_4 < 2$

Conjectura: $1 \le z_n \le z_{n+1} < 2, \forall n$

Aplique o Princípio da Indução.

$$1 \le z_n \le z_{n+1} < 2 \implies 2 \le 2z_n \le 2z_{n+1} < 4 \implies$$

$$\sqrt{2} \le \sqrt{2z_n} \le \sqrt{2z_{n+1}} < 2 \implies 1 \le \sqrt{2} \le z_{n+1} \le z_{n+2} < 2$$

Seja z o limite de Z; $z \neq 0$ (razão?).

$$z = \sqrt{2z} \implies z^2 - 2z = 0 \implies z = 2 \quad \Box$$

 Outros tópicos discutidos nesta seção: cálculo de raízes quadradas e o número de Euler.

3.4 Subsequências e o Teorema de Bolzano-Weirtrass

Informalmente, uma subsequência é uma sequência construída a partir dos termos de outra sequência; porém, exige-se que os termos comuns estejam ordenados da mesma forma. Por exemplo, se (x_n) é uma sequência, então (x_{2n}) , (x_{3n}) , (x_{10n}) e (x_{n^4}) são subsequências de (x_n) ; $(1/2, 1/4, 1/6, \cdots)$ é uma subsequência de $(1/2, 1/3, 1/4, 1/5, 1/6, \cdots)$. Relevância? Uma subsequência pode ser utilizada para identificar propriedades da sequência original.

Definição 3.4.1 Sejam $X=(x_n)$ uma sequência de números reais e $n_1 < n_2 < \cdots < n_k < \cdots$ uma sequência estritamente crescente de números naturais. A sequência $X'=(x_{n_k})$ dada por $(x_{n_1}, x_{n_2}, \cdots, x_{n_k}, \cdots)$ é dita ser uma **subsequência** de X.

Teorema 3.4.2 Se uma sequência $X = (x_n)$ de números reais converges para x, então todo subsequência $X' = (x_{n_k})$ de X também converge para x.

Prova. O primeiro passo consiste em mostrar que $n_k \ge k$. Claramente, $n_1 \ge 1$. Agora, observe que

$$n_k > k \implies n_k + 1 > k + 1$$
.

Como $n_{k+1} \ge n_k + 1$, $n_{k+1} \ge k + 1$.

Dito isto, utilize o fato que X converge para x para concluir que, dado $\varepsilon > 0$, existe $K(\varepsilon)$ tal que $|x_k - x| < \varepsilon$ para todo $k \ge K(\varepsilon)$. Tendo em vista que $n_k \ge k$, $|x_{n_k} - x| < \varepsilon$. \square

Corolário 3.4.3 (Critérios de Divergência) Se a sequência $X = (x_n)$ em \mathbb{R} satisfaz

- (i) ou (ii) abaixo, então X é divergente.
- (i) X tem duas subsequências X' e X'' convergentes tais que $\lim X' \neq \lim X''$.
- (ii) X é ilimitada.

Prova. A propriedade (i) é decorrente do último resultado, ao passo que (ii) é consequência do Teorema 3.2.2. □

Teorema 3.4.7 (Subsequência Monótona) Se $X = (x_n)$ é uma sequência em \mathbb{R} , então X tem uma subsequência monótona.

Prova. Um termo x_m de X é dito ser um **pico** se $x_m \ge x_n$ para todo $n \ge m$; em outras palavras, x_m é maior ou igual que todos os termos que o sucedem. Vale ressaltar que em uma sequência decrescente cada termo é um pico, ao passo que uma estritamente crescente é desprovida de picos.

Suponha que X tenha um número infinito de picos. Liste esses picos de forma que os seus subscritos estejam ordenados de forma crescente: $x_{m_1}, x_{m_2}, \dots, x_{m_k}, \dots$, sendo que $m_1 < m_2 < \dots < m_k < \dots$. Tendo em vista que cada um desses termos é um

pico, então $x_{m_1} \ge x_{m_2} \ge \cdots \ge x_{m_k} \ge \cdots$. Assim sendo, (x_{m_k}) é uma subsequência decrescente de X.

Assuma agora que X tenha um número finito (possivelmente zero) de picos. Mais uma vez, liste-os de forma que os subscritos estejam crescentemente ordenados: $x_{m_1} \ge x_{m_2} \ge \cdots \ge x_{m_r}$. Seja s_1 primeiro índice maior que m_r ; ou seja, $s_1 = m_r + 1$ (observe que $m_r = 0$ se não houver picos). Como x_{s_1} não é um pico, existe um índice $s_2 > s_1$ tal que $x_{s_1} < x_{s_2}$. De forma similar, x_{s_2} não é um pico. Logo, existe um índice $s_3 > s_2$ tal que $x_{s_2} < x_{s_3}$. A aplicação repetida deste raciocínio nos permite construir uma subsequência (x_{s_k}) que satisfaz as desigualdades $x_{s_1} < x_{s_2} < \cdots < x_{s_k} < \cdots$.

Teorema 3.4.8 (Bolzano-Weirtrass) Seja X uma sequência em \mathbb{R} . Se X é limitada, então X tem uma subsequência convergente.

Prova. Seja X uma sequência de números reais. De acordo com o Teorema da Subsequência Monótona, X tem uma subsequência monótona X'. Adicionalmente, o fato de que X é limitada implica que o mesmo é verdade para X'. Assim sendo, X' é limitada e monótona. Aplique o Teorema 3.3.2 para concluir que X' é convergente.

Teorema 3.4.9 Seja X uma sequência limitada de números reais e x um número real tal que toda subsequência convergente de X converge para x. Então $\lim X = x$.

3.5 O Critério de Cauchy

O Critério de Cauchy permite que se estabeleça a convergência de uma sequência sem a necessidade de se conhecer o seu limite.

Definição 3.5.1 Uma sequência X de números reais é dita ser uma **sequência de** Cauchy se para todo $\varepsilon > 0$ existir um número natural $H(\varepsilon)$ tal que

$$n, m \ge H(\varepsilon) \implies |x_n - x_m| < \varepsilon.$$

• Atenção: para todo n e m maiores que ou iguais a $H(\varepsilon)$.

O nosso objetivo nesta seção consiste em estabelecer que uma sequência em \mathbb{R} é convergente se e somente se ela é de Cauchy.

Exemplos 3.5.2 (a) A sequência (1/n) é de Cauchy. Dado $\varepsilon > 0$, seja $H(\varepsilon)$ um natural maior que $2/\varepsilon$. Desta forma,

$$n \ge H(\varepsilon) \implies \frac{1}{n} \le \frac{1}{H(\varepsilon)} < \frac{\varepsilon}{2} \implies \left| \frac{1}{n} \right| < \frac{\varepsilon}{2}$$

O mesmo raciocínio estabelece que $[m \ge H(\varepsilon) \implies |-1/m| < \varepsilon/2]$. Assim sendo,

$$\left|\frac{1}{n} - \frac{1}{m}\right| \le \left|\frac{1}{n}\right| + \left|-\frac{1}{m}\right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

(b) A sequência $(1+(-1)^n)$ não é de Cauchy.

Uma sequência não é de Cauchy se existe um $\varepsilon_0 > 0$ tal que para todo H existem n e m maiores que H tal que $|x_n - x_m| \ge \varepsilon_0$. Dito isto, seja n um índice par qualquer e m = n + 1. Logo, $x_n = 2$ e $x_m = 0$; assim sendo, $|x_n - x_m| = 2$. Para concluir, considere qualquer $\varepsilon_0 \le 2$.

O nosso objetivo é mostrar que as sequências de Cauchy são justamente as sequências convergentes. Mostraremos inicialmente que uma sequência convergente é de Cauchy.

Lema 3.5.3 Se X é uma sequência convergente de números reais, então X é uma sequência de Cauchy.

Prova. Denote o limite de X por x. Dado $\varepsilon > 0$, existe um natural $K(\varepsilon/2)$ tal que $|x_n - x| < \varepsilon/2$ para todo $n \ge K(\varepsilon/2)$. Desta forma, se $n, m \ge K(\varepsilon/2)$, então

$$|x_n - x_m| = |(x_n - x) + (x - x_m)| \le |x_n - x| + |x - x_m| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Logo, é suficiente fazer $H(\varepsilon) = K(\varepsilon/2)$ para concluir que X é de Cauchy.

Lema 3.5.4 Uma sequência de Cauchy em \mathbb{R} é limitada.

Prova. Seja X uma sequência de Cauchy. Logo, existe $H \in \mathbb{N}$ tal que, para todo $n, m \geq H$,

$$|x_n - x_m| < 1 \implies |x_n - x_H| < 1 \implies |x_n| \le |x_n - x_H| + |x_H| < 1 + |x_H|.$$

Defina M de forma que

$$M = \max\{|x_1|, |x_2|, \cdots, |x_{H-1}|, |x_H| + 1\}.$$

Tendo em vista que $|x_n| \leq M$ para todo $n \in N, X$ é limitada.

Teorema 3.5.5 (Critério de Cauchy para Convergência) Uma sequência de números reais é convergente se e somente se ela é uma sequência de Cauchy.

Prova. A parte "somente se" foi estabelecida no Lema 3.5.3. Com relação à parte "se", seja X uma sequência de Cauchy. O Lema 3.5.4 implica que X é limitada. Assim sendo, é possível aplicar o Teorema 3.4.8 (Bolzano-Weirtrass) para concluir que X possui uma subsequência $X' = (x_{n_k})$ que é convergente. Denote o limite dessa subsequência por x^* . Concluiremos a prova mostrando que $\lim X = x^*$.

Seja ε um real positivo. Como X é de Cauchy, existe um número natural $H(\varepsilon/2)$ tal que se $n, m \ge H(\varepsilon/2)$, então

$$|x_n - x_m| < \varepsilon/2. \tag{1}$$

Adicionalmente, como X' é convergente, existe um número $K'(\varepsilon) \geq H(\varepsilon/2)$ pertencente ao conjunto $\{n_1, n_2, \dots\}$ tal que $|x_{K'(\varepsilon)} - x^*| < \varepsilon/2$. Como $K'(\varepsilon) \geq H(\varepsilon/2)$, é possível fazer $m = K'(\varepsilon)$ em (1) para concluir que $|x_n - x_{K'(\varepsilon)}| < \varepsilon/2$. Agora, combine as duas últimas desigualdades concluir que

$$|x_n - x^*| \le |x_n - x_{K'(\varepsilon)}| + |x_{K'(\varepsilon)} - x^*| < \varepsilon/2 + \varepsilon/2 = \varepsilon$$

para todo $n \geq H(\varepsilon/2)$. Faça $K(\varepsilon) = H(\varepsilon/2)$ para concluir que X converge para x^* . \square

Exemplos 3.5.6 (a) Seja $X = (x_n)$ a sequência definida por $x_1 = 1, x_2 = 2$ e

$$x_n = \frac{1}{2}(x_{n-2} + x_{n-1}) \tag{3.4}$$

É possível utilizar uma planilha eletrônica para concluir que ela não é monótona; adicionalmente, ela não aparenta ser monótona mesmo para valores de n próximos de 50. Contudo, $1 \le x_n \le 2$ para todo n. Segue-se um esboço da prova.

Seja P(n) a afirmativa $[1 \le x_n \le 2 \& 1 \le x_{n+1} \le 2]$; logo, P(n+1) é a afirmativa $[1 \le x_{n+1} \le 2 \& 1 \le x_{n+2} \le 2]$. Observe que existe uma sutileza na afirmativa $[P(n) \implies P(n+1)]$.

$$1 = x_1 \le 2$$
$$1 \le x_2 = 2$$

$$1 \leq x_n \leq 2 \& 1 \leq x_{n+1} \leq 2 \implies 0, 5 \leq 0, 5x_n \leq 1 \& 0, 5 \leq 0, 5x_{n+1} \leq 1 \implies 1 = 0, 5 + 0, 5 \leq 0, 5x_n + 0, 5x_{n+1} = x_{n+2} \leq 1 + 1 = 2 \implies 1 \leq x_{n+2} \leq 2$$

Adicionalmente,

$$|x_n - x_{n+1}| = \left(\frac{1}{2}\right)^{n-1} \tag{3.5}$$

para todo n. Esboço: mostraremos que

$$x_n - x_{n+1} = (-1)^n \left(\frac{1}{2}\right)^{n-1} \tag{3.6}$$

Q(n) é a seguinte afirmativa:

$$x_{n} - x_{n+1} = (-1)^{n} \left(\frac{1}{2}\right)^{n-1} & x_{n+1} - x_{n+2} = (-1)^{n+1} \left(\frac{1}{2}\right)^{n}$$

$$x_{1} - x_{2} = 1 - 2 = -1 = (-1)^{1} \left(\frac{1}{2}\right)^{0}$$

$$x_{2} - x_{3} = 2 - 1, 5 = \frac{1}{2} = (-1)^{2} \left(\frac{1}{2}\right)^{1}$$

$$x_{n+2} - x_{n+3} = \frac{1}{2}(x_{n} + x_{n+1}) - \frac{1}{2}(x_{n+1} + x_{n+2}) = \frac{1}{2}x_{n} - \frac{1}{2}x_{n+2} \implies$$

$$x_{n+2} - x_{n+3} = \frac{1}{2}(x_{n} - x_{n+1}) + \frac{1}{2}(x_{n+1} - x_{n+2})$$

Assuma que Q(n) é verdadeira.

$$x_{n+2} - x_{n+3} = \frac{1}{2}(-1)^n \left(\frac{1}{2}\right)^{n-1} + \frac{1}{2}(-1)^{n+1} \left(\frac{1}{2}\right)^n \Longrightarrow$$

$$x_{n+2} - x_{n+3} = (-1)^n \left(\frac{1}{2}\right)^n + (-1)^{n+1} \left(\frac{1}{2}\right)^{n+1} \Longrightarrow$$

$$x_{n+2} - x_{n+3} = (-1)^{n+2} \left(\frac{1}{2}\right)^{n+1} \left[(-1)^{-2} \left(\frac{1}{2}\right)^{-1} + (-1)^{-1} \left(\frac{1}{2}\right)^0\right] \Longrightarrow$$

$$x_{n+2} - x_{n+3} = (-1)^{n+2} \left(\frac{1}{2}\right)^{n+1} [2-1] = (-1)^{n+2} \left(\frac{1}{2}\right)^{n+1}$$

Dito isto, se m > n, então é possível combinar (3.5) com a desigualdade triangular para concluir que

$$|x_n - x_m| \leq |x_n - x_{n+1}| + |x_{n+1} - x_{n+2}| + \dots + |x_{m-1} - x_m|$$

$$= \left(\frac{1}{2}\right)^{n-1} + \left(\frac{1}{2}\right)^n + \dots + \left(\frac{1}{2}\right)^{m-2}$$

$$= \left(\frac{1}{2}\right)^{n-1} \left(1 + \frac{1}{2} + \frac{1}{2^2} \dots + \frac{1}{2^{m-n-1}}\right) \leq \left(\frac{1}{2}\right)^{n-1} 2 = \frac{1}{2^{n-2}} \Longrightarrow$$

$$|x_n - x_m| \leq \frac{1}{2^{n-2}} = \frac{4}{2^n}.$$

Como

$$\frac{4}{2^n} < \varepsilon \iff 2^n > 4/\varepsilon \iff n > \frac{\ln(4/\varepsilon)}{\ln 2},$$

se $H(\varepsilon)$ é um natural maior que $\frac{\ln(4/\varepsilon)}{\ln 2}$, então

$$m > n \ge H(\varepsilon) \implies n > \frac{\ln(4/\varepsilon)}{\ln 2} \implies \frac{4}{2^n} < \varepsilon \implies |x_n - x_m| < \varepsilon.$$

Desta forma, X é uma sequência de Cauchy; logo, X é convergente.

Considere agora o problema de computar o valor do limite de X. Denote o valor em questão por x. A igualdade (3.4) implica que x = 0, 5(x + x). Infelizmente, essa última expressão não nos ajuda a achar o valor de x. Dito isto, lembre que a subsequência (x_{2n+1}) também converge para x. Agora, observe que $x_1 = 1$,

$$x_3 = 1, 5 = \frac{3}{2} = 1 + \frac{1}{2} \implies x_3 = x_1 + \frac{1}{2},$$

 $x_5 = 1,625 = \frac{13}{8} = 1 + \frac{1}{2} + \frac{1}{2^3} \implies x_5 = x_3 + \frac{1}{2^3}.$

Dito isto, é possível mostrar que

$$x_{2n+1} - x_{2n-1} = \frac{1}{2^{2n-1}}. (3.7)$$

De fato,

$$x_{2n+1} - x_{2n-1} = \frac{1}{2}(x_{2n-1} + x_{2n}) - x_{2n-1} = \frac{1}{2}(x_{2n} - x_{2n-1}) \Longrightarrow x_{2n+1} - x_{2n-1} = -\frac{1}{2}(x_{2n-1} - x_{2n}).$$

Combine a última igualdade com (3.6). Logo,

$$x_{2n+1} - x_{2n-1} = -\frac{1}{2}(-1)^{2n-1} \left(\frac{1}{2}\right)^{2n-2} = \left(\frac{1}{2}\right)^{2n-1}.$$

Assim sendo, é possível utilizar (3.7) e o princípio da indução para concluir que

$$x_{2n+1} = 1 + \sum_{i=1}^{n} \frac{1}{2^{2i-1}}. (3.8)$$

Esboço: Como $x_3 = 1 + 1/2$, (3.8) é verdadeira para n = 1. Agora, assuma que essa igualdade se verifique. Combine-a com (3.7).

$$x_{2n+3} - x_{2n+1} = \frac{1}{2^{2n+1}} \Longrightarrow x_{2n+3} = x_{2n+1} + \frac{1}{2^{2n+1}} \Longrightarrow$$

$$x_{2n+3} = 1 + \sum_{i=1}^{n} \frac{1}{2^{2i-1}} + \frac{1}{2^{2n+1}} \Longrightarrow$$

$$x_{2n+3} = 1 + \sum_{i=1}^{n+1} \frac{1}{2^{2i-1}}$$

Por fim, observe que

$$x_{2n+1} = 1 + \sum_{i=1}^{n} \frac{1}{2^{2i-1}} = 1 + 2\sum_{i=1}^{n} \frac{1}{2^{2i}} = 1 + 2\sum_{i=1}^{n} \frac{1}{4^{i}} = 1 + 2\frac{1/4 - (1/4)^{n+1}}{1 - 1/4} \implies x_{2n+1} = 1 + 2\frac{1 - 1/4^{n}}{4 - 1} = 1 + \frac{2}{3}\left(1 - \frac{1}{4^{n}}\right) \implies \lim(x_{2n+1}) = 1 + \frac{2}{3} = \frac{5}{3} = x.$$

(b) Considere a sequência $Y = (y_n)$, onde $y_1 = 1$ e $y_{n+1} = y_n + \frac{(-1)^n}{(n+1)!}$. Ela não é monótona, pois o sinal do segundo termo na última soma se alterna conforme n é par ou impar. Contudo, ela é de Cauchy, pois para m > n,

$$y_{m} - y_{n} = y_{m} - y_{m-1} + y_{m-1} - y_{m-2} + \dots + y_{n+2} - y_{n+1} + y_{n+1} - y_{n} = \frac{(-1)^{m-1}}{m!} + \frac{(-1)^{m-2}}{(m-1)!} + \dots + \frac{(-1)^{n+1}}{(n+2)!} + \frac{(-1)^{n}}{(n+1)!} \Longrightarrow |y_{m} - y_{n}| \le \frac{1}{m!} + \frac{1}{(m-1)!} + \dots + \frac{1}{(n+2)!} + \frac{1}{(n+1)!}.$$

De acordo com o exemplo 1.2.4.e (p. 14 do livro texto), $2^n \le (n+1)!$. Assim sendo,

$$|y_m - y_n| \le \frac{1}{2^{m-1}} + \frac{1}{2^{m-2}} + \dots + \frac{1}{2^{n+1}} + \frac{1}{2^n} = \frac{1}{2^n} \left(1 + \frac{1}{2} + \dots + \frac{1}{2^{m-2-n}} + \frac{1}{2^{m-1-n}} \right) \Longrightarrow |y_m - y_n| < \frac{1}{2^n} \frac{1}{1 - 1/2} \Longrightarrow |y_m - y_n| < \frac{1}{2^{n-1}}$$

Seja y o limite de Y. Como $-2^{-(n-1)} < y_m - y_n < 2^{-(n-1)}$, podemos fazer $m \to \infty$ para concluir que $-2^{-(n-1)} \le y - y_n \le 2^{-(n-1)}$. Logo,

$$|y_n - y| \le \frac{1}{2^{n-1}}.$$

Desta forma, é possível utilizar y_n para obter estimativas o quão acurada quisermos de y. Procedimento: dado um erro δ , calcule obtenha um n_0 tal que $\frac{1}{2^{n_0-1}} \leq \delta$ e em seguida avalie y_{n_0} .

(c) A sequência (h_n) , onde

$$h_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n},$$

já foi analisada no Exemplo 3.3.3(b). Ela é divergente. Se m > n, então

$$h_m - h_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{m}.$$

Utilize o fato de que m > n para concluir que cada um dos m - n termos do lado direito é maior que ou igual a 1/m. Logo,

$$h_m - h_n \ge \frac{1}{m} + \frac{1}{m} + \dots + \frac{1}{m} = \frac{m-n}{m}.$$

Faça m = 2n para concluir que

$$h_{2n} - h_n \ge \frac{2n - n}{2n} = \frac{1}{2}.$$

Assim sendo, (h_n) não é de Cauchy.

Definição 3.5.7 Uma sequência X de números reais é dita ser **contrativa** (ou uma **contração**) se existir uma constante $C \in (0,1)$ tal que

$$|x_{n+2} - x_{n+1}| \le C|x_{n+1} - x_n| \tag{3.9}$$

para todo $n \in N$.

• The number C is called the **constant** of the contractive sequence. The?

Teorema 3.5.8 Toda sequência contrativa é uma sequência de Cauchy e, consequentemente, convergente.

Prova. Seja X uma sequência contrativa. Tendo em vista o Teorema 3.5.5, basta mostrar que X é de Cauchy. É possível mostrar que

$$|x_{n+2} - x_{n+1}| \le C^n |x_2 - x_1| \tag{3.10}$$

para todo n. De fato, (3.9) implica que (3.10) é verdadeira para n = 1. Agora, suponha (3.10) seja verdadeira para um n genérico. Utilize (3.9) para concluir que

$$|x_{n+3} - x_{n+2}| \le C|x_{n+2} - x_{n+1}| \le C(C^n|x_2 - x_1|) \implies |x_{n+3} - x_{n+2}| \le C^{n+1}|x_2 - x_1|.$$

Por outro lado, se m > n, então

$$|x_m - x_n| \le |x_m - x_{m-1}| + |x_{m-1} - x_{m-2}| + \dots + |x_{n+1} - x_n|.$$

Combine essa última expressão com (3.10) para concluir que

$$\begin{aligned} |x_m-x_n| & \leq C^{m-2}|x_2-x_1| + C^{m-3}|x_2-x_1| + \dots + C^{n-1}|x_2-x_1| \implies \\ |x_m-x_n| & \leq (C^{m-2} + C^{m-3} + \dots + C^{n-1})|x_2-x_1| \implies \\ |x_m-x_n| & \leq C^{n-1}\left[C^{(m-2)-(n-1)} + C^{(m-3)-(n-1)} + \dots + C + 1\right]|x_2-x_1| \implies \\ |x_m-x_n| & \leq C^{n-1}[1 + C + C^2 + \dots]|x_2-x_1| = C^{n-1}\frac{1}{1-C}|x_2-x_1|. \end{aligned}$$

Como $C \in (0,1)$, $\lim(C^{n-1}) = 0$. Logo, X é uma sequência de Cauchy.

• Discutir a última frase $(n \to \infty)$.