ANÁLISE MATEMÁTICA PARA ECONOMISTAS: NOTAS DE AULA

Este documento consiste em notas de aula para o Capítulo 2 de Bartle & Sherbert (*Introduction to Real Analysis.* 3ª edição. Nova Iorque: John Wiley & Sons, 2000).

Elaboração: Alexandre B. Cunha

2 Os Números Reais

- É possível construir $\mathbb R$ a partir de $\mathbb N$ ou $\mathbb Q$. Não faremos isso. Simplesmente assumiremos algumas poucas propriedades básicas e obteremos várias outras.
- Estrutura do capítulo:
 - Seção 2.1: algumas propriedades dos números reais;
 - Seção 2.2: valor absoluto;
 - Seção 2.3: completude;
 - Seção 2.4: alguns resultados fundamentais (exemplos: existência de raiz quadrada e densidade dos racionais em \mathbb{R});
 - Seção 2.5: a incontabilidade de \mathbb{R} .

2.1 As Propriedade Algébricas e de Ordenação de $\mathbb R$

Seremos rápidos nesta seção.

Axioma 2.1.1 (As Propriedade Algébricas de \mathbb{R}) Existem duas operações binárias definidas em \mathbb{R} , denotadas por $+ e \cdot e$ denominadas, respectivamente, adição e multiplicação. Essas operações satisfazem as seguintes propriedades:

- **(A1)** a + b = b + a para todo a e todo b em \mathbb{R} ;
- **(A2)** (a+b)+c=a+(b+c), para todo a, todo b e todo c em \mathbb{R} ;
- (A3) existe um elemento $0 \in \mathbb{R}$ tal que 0 + a = a e a + 0 = a para todo a em \mathbb{R} ;

- (A4) para todo $a \in \mathbb{R}$, existe um elemento $-a \in \mathbb{R}$ tal que a + (-a) = 0 e (-a) + a = 0;
- **(M1)** $a \cdot b = b \cdot a$ para todo a e todo b em \mathbb{R} ;
- (M2) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$, para todo a, todo b e todo c em \mathbb{R} ;
- (M3) existe um elemento $1 \in \mathbb{R}$ tal que $1 \cdot a = a$ e $a \cdot 1 = a$ para todo a em \mathbb{R} ;
- **(M4)** para todo $a \in \mathbb{R} \setminus \{0\}$ existe um elemento $1/a \in \mathbb{R}$ tal que $a \cdot (1/a) = 1$ e $(1/a) \cdot a = 1$;
- (**D**) para todo a, todo b e todo c em \mathbb{R} , $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ e $(b+c) \cdot a = (b \cdot a) + (c \cdot a)$.
 - A posição da expressão "para todo" é relevante. A título de ilustração, considere a propriedade (M3). Se a expressão "para todo" fosse colocada no começo, então alguém poderia assumir que o número 1 dependeria de a.

Teorema 2.1.2 (a) Se z e a pertencem a \mathbb{R} e z + a = a, então z = 0.

- (b) Se $u \in b \neq 0$ pertencem a \mathbb{R} e $u \cdot b = b$, então u = 1.
- (c) Se $a \in \mathbb{R}$, então $a \cdot 0 = 0$.

Prova (esboço) do item (a).

$$z \stackrel{A3}{=} z + 0 \stackrel{A4}{=} z + (a + (-a)) \stackrel{A2}{=} (z + a) + (-a) \stackrel{z+a=a}{=} a + (-a) \stackrel{A4}{=} 0$$

Teorema 2.1.3 (a) Se $a \neq 0$ e b pertencem a \mathbb{R} e satisfazem $a \cdot b = 1$, então b = 1/a. **(b)** Se a e b pertencem a \mathbb{R} e $a \cdot b = 0$, então a = 0 ou b = 0.

Comentário Os autores não deveriam ter utilizado a palavra either no item (b).

Números Racionais e Irracionais

Um elemento n de \mathbb{N} é a soma de $1 \in \mathbb{R}$ com ele mesmo n vezes ("n-fold sum"); logo, $\mathbb{N} \subset \mathbb{R}$. O número $0 \in \mathbb{R}$ também pertence a \mathbb{Z} e um elemento -n de \mathbb{Z} é igual a "n-fold sum" de $-1 \in \mathbb{R}$; desta forma, $\mathbb{Z} \subset \mathbb{R}$. Os elementos de \mathbb{R} que podem ser expressos na forma b/a, onde b e a pertencem a \mathbb{Z} e $a \neq 0$, constituem o conjunto \mathbb{Q} . Evidentemente, $\mathbb{Q} \subseteq \mathbb{R}$; contudo, o fato de que $\mathbb{Q} \neq \mathbb{R}$ merece alguma reflexão.

Comentário Sociedade dos Pitagoreanos (*Pythagorean Society*): já se sabia que não existe $r \in \mathbb{Q}$ com propriedade que $r^2 = 2$. (Desenhar quadrado com lados de dimensão 1 e diagonal com medida r). O conjunto $\mathbb{R}\backslash\mathbb{Q}$ é chamado de conjunto dos irracionais.

Teorema 2.1.4 Não existe $r \in \mathbb{Q}$ tal que $r^2 = 2$.

Prova. Suponha, por absurdo, que p e q pertencem a \mathbb{Z} e $(p/q)^2 = 2$. Sem perda de generalidade, assuma que p e q são positivos e não tem nenhum fator comum. Como

$$p^2 = 2q^2, (2.1)$$

 p^2 é um número par. Isso implica que p também é um número par. Para chegar a essa conclusão, suponha que p=2n-1, onde n é um número natural. Nesse caso, p^2 seria igual a $4n^2-4n+1$, o que implicaria em p^2 ser ímpar. Dado que p é par, p=2m para algum $m \in \mathbb{N}$. Logo, (2.1) implica que

$$4m^2 = 2q^2 \Rightarrow q^2 = 2m^2.$$

Assim sendo, q^2 é par e, a exemplo de p, q também é par. Contudo, tal conclusão contradiz o fato de que p e q não possuem algum fator comum.

Comentário Prova ligeiramente distinta da do livro-texto.

As Propriedades de Ordenação de $\mathbb R$

Axioma 2.1.5 (As Propriedades de Ordenação de \mathbb{R}) Existe um subconjunto \mathbb{P} de \mathbb{R} , denominado de conjunto dos números reais positivos, que satisfaz as seguintes propriedades:

- (i) Se a e b pertencem a \mathbb{P} , então a + b pertence a \mathbb{P} .
- (ii) Se $a \in b$ pertencem a \mathbb{P} , então ab pertence a \mathbb{P} .
- (iii) Se a pertence a \mathbb{R} , então exatamente uma dessas três condições se verifica: $a \in \mathbb{P}$, a = 0 e $-a \in \mathbb{P}$.

Se $a \in \mathbb{P}$, então nós escrevemos a > 0 e afirmamos que a é positivo. Se $a \in \mathbb{P} \cup \{0\}$, então nós escrevemos $a \geq 0$ e afirmamos que a é não negativo. Se $-a \in \mathbb{P}$... Se $-a \in \mathbb{P} \cup \{0\}$...

Definição 2.1.6 Sejam $a \in b$ elementos de \mathbb{R} .

- (a) Se $a b \in \mathbb{P}$, então nós escrevemos a > b ou b < a.
- (b) Se $a b \in \mathbb{P} \cup \{0\}$, então nós escrevemos $a \ge b$ ou $b \le a$.

Teorema 2.1.7 Sejam $a, b \in c$ elementos de \mathbb{R} .

- (a) Se a > b e b > c, então a > c.
- (b) Se a > b, então a + c > b + c.
- (c) Se a > b e c > 0, então ca > cb; se a > b e c < 0, então ca < cb.

Prova do item (a). Como ambos a-b e b-c pertencem a \mathbb{P} , então 2.1.5(i) implica que $(a-b)+(b-c) \in \mathbb{P}$. Utilize as propriedades (A1), (A2) e (A4) de 2.1.1 para concluir que (a-b)+(b-c)=a-c. Assim sendo, $a-c \in \mathbb{P}$.

Teorema 2.1.8 (a) Se $a \in \mathbb{R}$ e $a \neq 0$, então $a^2 > 0$.

- **(b)** 1 > 0.
- (c) Se $n \in N$, então n > 0.

Conforme mencionado no livro-texto, não existe um número positivo que seja menor do que todos os outros números positivos. De fato, se a > 0, então 0 < (1/2)a < a. Atenção: é preciso estabelecer que as duas desigualdades são verdadeiras. Segue-se um **esboço**.

0 < (1/2)a: [1 e 2 positivos (ambos naturais)] [Suponha que 1/2 < 0. Como $(1/2) \cdot 2 = 1$, 2.1.7(c) implicaria 1 < 0] [Aplique 2.1.7(c) para concluir que (1/2)a > 0]

$$(1/2)a < a$$
: $[a > 0 \stackrel{(1)}{\Rightarrow} a + a = 2a > a \stackrel{(2)}{\Rightarrow} 2a - a > 0 \stackrel{(3)}{\Rightarrow} a - (1/2)a > 0 \stackrel{(4)}{\Rightarrow} a > (1/2)a]$
(1) 2.1.7(b) (2) 2.1.6(a) (3) 2.1.7(c) ["×(1/2)"e 2.1.1] (4) 2.1.6(a)

O fato de que \mathbb{P} não possui elemento mínimo é generalizado no próximo teorema, o qual pode ser útil para estabelecer que um dado número é igual a 0.

Teorema 2.1.9 Se $a \in \mathbb{R}$ e $0 \le a < \varepsilon$ para todo $\varepsilon > 0$, então a = 0.

Prova. A prova será feita por contraposição. Suponha que $a \neq 0$. Se a < 0, então a desigualdade $0 \leq a$ é desrespeitada. Se a > 0, então defina $\varepsilon_0 = (1/2)a$. Como (1/2)a < a, a condição $a < \varepsilon$ para todo $\varepsilon > 0$ não se verifica.

• Teorema 2.1.10 e Corolário 2.1.11: ler.

Desigualdades _

• Exemplos 2.1.12 e 2.1.13: ler.

Exemplo 2.1.13 (c) A desigualdade de Bernoulli Se x > -1, então

$$(1+x)^n \ge 1 + nx,\tag{4}$$

para todo $n \in N$.

Aplicaremos o Princípio da Indução. Claramente, (4) é respeitada para n = 1. Suponha agora que a desigualdade em questão se verifica para um n genérico. Utilize o fato que 1 + x é positivo para concluir que

$$(1+x)^{n+1} \ge (1+nx)(1+x) = 1+x+nx+nx^2 = 1+(n+1)x+nx^2 \ge 1+(n+1)x.$$

Assim sendo,
$$(1+x)^{n+1} \ge 1 + (n+1)x$$
.

2.2 Valor Absoluto e a Linha Reta

Definição 2.2.1 O valor absoluto do número real a, denotado por |a|, é dado por

$$|a| = \begin{cases} a & \text{se } a > 0, \\ 0 & \text{se } a = 0, \\ -a & \text{se } a < 0. \end{cases}$$
 (2.2)

Por exemplo, |5| = 5 e |-8| = 8. Observe que $|a| \ge 0$ e |a| = |-a| para todo a; adicionalmente, |a| = 0 se e somente se a = 0.

Teorema 2.2.2 (a) |ab| = |a||b|, para todo a e todo b em \mathbb{R} .

- **(b)** $|a|^2 = a^2$, para todo $a \in \mathbb{R}$.
- (c) Se $c \ge 0$, então $|a| \le c$ se e somente se $-c \le a \le c$.
- (d) $-|a| \le a \le |a|$, para todo $a \in \mathbb{R}$.

Prova. Considere o item (a). Suponha que a=0 ou b=0. Logo, |ab|=|0|=0, ao passo que |a||b| também é igual a 0. Existem três outros casos a serem considerados: (i) a>0 e b>0; (ii) a>0 e b<0 e (iii) a<0 e b<0. Se (i) se verifica, então ab>0; consequentemente, |ab|=ab. Adicionalmente, |a|=a e |b|=b; logo, |a||b|=ab. Assim sendo, |ab|=|a||b|. Suponha agora que (ii) se verifica. Desta forma, ab<0, de onde se conclui que |ab|=-ab. Por outro lado, $|a||b|=a\cdot(-b)=-ab$. Por fim, se (iii) se verifica, então ab>0, o que implica que |ab|=ab. Ademais, |a|=-a e |b|=-b; assim sendo, $|a||b|=(-a)\cdot(-b)=ab$.

No tocante ao item (b), lembre que $a^2 \ge 0$. Logo, $a^2 = |a^2|$. Todavia, o item (a) implica que $|a^2| = |a|^2$. Desta forma, $a^2 = |a|^2$.

Discute-se agora o item (c). Seja c um real não negativo. Considere a parte "somente se" da afirmativa. Assuma que $|a| \le c$. Se $a \ge 0$, então |a| = a; logo, $a \le c$. Adicionalmente, é trivialmente verdade que $a \ge -c$. Combine as duas últimas desigualdades para obter o resultado desejado. Se a < 0, então |a| = -a. Assim sendo, $-a \le c$, o que implica que $a \ge -c$. Ademais, a desigualdade $a \le c$ é trivialmente satisfeita. Mais uma vez, combine as duas desigualdades mais recentes para concluir que $-c \le a \le c$. Para estabelecer a parte "se", assuma que $-c \le a \le c$. Logo, ambas as desigualdades $-a \le c$ e $a \le c$ são satisfeitas. Como (2.2) implica que |a| é igual a a ou 0 ou -a, $|a| \le c$.

Para estabelecer a afirmativa (d) é suficiente fazer c = |a| e aplicar a parte "somente se" da afirmativa (c).

Teorema 2.2.3 (Desigualdade Triangular) Se a e b pertencem a \mathbb{R} , então $|a+b| \le |a| + |b|$.

Prova. A desigualdade em questão decorre do Teorema 2.2.2. Primeiro, utilize (d) para concluir que

$$-|a| \le a \le |a| \& -|b| \le b \le |b| \Rightarrow -(|a|+|b|) \le a+b \le |a|+|b|.$$

Agora, observe que (c) implica que $|a+b| \le |a| + |b|$.

Corolário 2.2.4 Se a e b pertencem a \mathbb{R} , então

- (a) $||a| |b|| \le |a b|$,
- **(b)** $|a-b| \le |a| + |b|$.

Prova (esboço). (a) $[a = a - b + b \Rightarrow |a| = |(a - b) + b| \le |(a - b)| + |b| \Rightarrow |a| - |b| \le |a - b|$ $[b = b - a + a \Rightarrow |b| = |b - a + a| \le |b - a| + |a| \Rightarrow -|a - b| = -|b - a| \le |a| - |b|]$ Aplique 2.2.2(c).

(b) Substitua b por -b na Desigualdade Triangular.

Corolário 2.2.5 Se a_1, a_2, \dots, a_n são números reais, então $\left|\sum_{i=1}^n a_i\right| \leq \sum_{i=1}^n |a_i|$.

Exemplos 2.2.6 (a) Determine o conjunto A dos números reais x que satisfazem a condição |2x+3| < 7.

$$|2x+3| < 7 \iff -7 < 2x+3 < 7 \iff -10 < 2x < 4 \iff -5 < x < 2$$

 $A = \{x \in \mathbb{R} : -5 < x < 2\}$

(b) Determine o conjunto B dos números reais x que satisfazem

$$|x-1| < |x|. \tag{2.3}$$

Abordagem 1 Identificar uma forma de "remover" os sinais de valor absoluto.

Lado direito: $x \ge 0 \implies |x| = x; x < 0 \implies |x| = -x$

Lado esquerdo: $x \ge 1 \implies |x-1| = x-1; x < 1 \implies |x-1| = 1-x$

caso (i): $x \ge 1$

$$|x-1| < |x| \iff x-1 < x \iff -1 < 0$$

Logo, (2.3) é satisfeita para todo $x \ge 1$.

caso (ii): x < 1 e $x \ge 0$

$$|x-1| < |x| \iff 1-x < x \iff 1 < 2x \iff x > 1/2$$

Logo, (2.3) é satisfeita para 1/2 < x < 1.

caso (iii): x < 0

$$|x-1| < |x| \iff 1-x < -x \iff 1 < 0$$

Logo, (2.3) não é satisfeita para x < 0.

Conclusão: $B = \{x \in \mathbb{R} : x \ge 1 \text{ ou } 1/2 < x < 1\} = \{x \in \mathbb{R} : x > 1/2\}.$

Abordagem 2 Utilizar o fato que se $a \ge 0$ e $b \ge 0$, então

$$a < b \iff a^2 < b^2. \tag{2.4}$$

$$|x-1| < |x| \iff |x-1|^2 < |x|^2 \iff (x-1)^2 < x^2 \iff x^2 - 2x + 1 < x^2 \iff x > 1/2$$

Observação Sim, (2.4) está correta. Assuma que $a \ge 0$ e $b \ge 0$.

$$0 \leq a < b \Rightarrow a^2 \leq ab \& ab < b^2 \Rightarrow a^2 < b^2$$
$$a > b > 0 \Rightarrow a^2 > ab \& ab > b^2 \Rightarrow a^2 > b^2$$

(c) Seja A o conjunto $\{x \in \mathbb{R} : 2 \le x \le 3\}$ e $f: A \to \mathbb{R}$ a função definida por $f(x) = (2x^2 + 3x + 1)/(2x - 1)$. Ache um número real M tal que $|f(x)| \le M$ para todo $x \in A$.

$$|2x^2 + 3x + 1| \le 2|x^2| + 3|x| + 1 \le 2 \times 9 + 3 \times 3 + 1 = 28$$

Adicionalmente, $[2x-1<0\iff x<1/2]$. Logo, 2x-1>0 para todo $x\in A$.

$$|2x-1| = 2x-1 \ge 2 \times 2 - 1 = 3$$

Desta forma, é suficiente fazer M=28/3. Comentários: qualquer número maior que 28/3...; provavelmente 28/3 não é o menor valor possível.

A Linha Reta

O conceito de valor absoluto está associado à noção de distância; ver Figura 2.2.1 (p. 33).

Definição 2.2.7 Sejam $a \in \varepsilon$ dois números reais, sendo que $\varepsilon > 0$. A *vizinhança-* ε de a é o conjunto $V_{\varepsilon}(a) = \{x \in \mathbb{R} : |x - a| < \varepsilon\}$.

Observe que

$$x \in V_{\varepsilon}(a) \iff -\varepsilon < x - a < \varepsilon \iff a - \varepsilon < x < a + \varepsilon;$$

ver Figura 2.2.2 (p. 33).

Teorema 2.2.8 Seja a um número real. Se $x \in V_{\varepsilon}(a)$ para todo $\varepsilon > 0$, então x = a.

Prova. Se $|x-a| < \varepsilon$ para todo $\varepsilon > 0$, então o Teorema 2.1.9 implica que |x-a| = 0. Assim sendo, x = a.

Exemplos 2.2.9 (a) Seja U o conjunto $\{x \in \mathbb{R} : 0 < x < 1\}$. Para $a \in U$, defina $\varepsilon = \min\{a, 1 - a\}$. Mostre que $V_{\varepsilon}(a) \subseteq U$ (consequentemente, para todo $x \in U$ existe uma vizinhança- ε de x contida em U).

Há dois casos a considerar: (i) $a \ge 1 - a$ e (ii) a < 1 - a. Caso (i)

$$x \in V_{\varepsilon}(a) \Rightarrow |x-a| < \min\{a, 1-a\} = 1 - a \Rightarrow$$
$$-(1-a) < x - a < 1 - a \Rightarrow a - (1-a) < x < 1 \Rightarrow 0 < x < 1$$

Obs.: $a \ge 1 - a \Rightarrow 0 \le a - (1 - a)$. Caso (ii)

$$x \in V_{\varepsilon}(a) \Rightarrow |x - a| < \min\{a, 1 - a\} = a \Rightarrow$$

 $-a < x - a < a \Rightarrow 0 < x < 2a \Rightarrow 0 < x < 1$

Obs.: $a < 1 - a \Rightarrow 2a < 1$.

(b) Seja I o conjunto $\{x \in \mathbb{R} : 0 \le x \le 1\}$. Para qualquer $\varepsilon > 0$, $V_{\varepsilon}(0)$ contém pontos que não pertencem a I. Por exemplo, $-\varepsilon/2$ pertence a $V_{\varepsilon}(0)$ e não pertence a I.

(c) Se $|x-a| < \varepsilon$ e $|y-b| < \varepsilon$, então a Desigualdade Triangular implica que

$$|(x+y) - (a+b)| = |(x-a) + (y-b)| < |x-a| + |y-b| < 2\varepsilon.$$

Assim sendo, $x + y \in V_{2\varepsilon}(a + b)$. Entretanto, não se pode afirmar que x + y pertence a $V_{\varepsilon}(a + b)$. Exemplo: $a = 1, b = -1, \varepsilon = 3/8, x = 10/8$ e y = -6/8.

$$|x - a| = \frac{2}{8} \Rightarrow x \in V_{\frac{3}{8}}(a)$$

$$|y - b| = \frac{2}{8} \Rightarrow y \in V_{\frac{3}{8}}(b)$$

$$|(x + y) - (a + b)| = \frac{4}{8} \Rightarrow x + y \notin V_{\frac{3}{8}}(a + b) \square$$

2.3 A Propriedade de Completude de \mathbb{R}

Os conjuntos \mathbb{Q} e \mathbb{R} possuem as mesmas propriedades algébricas e de ordem. Todavia, ao contrário de \mathbb{Q} , \mathbb{R} possui a propriedade de ser completo.

Supremos e Ínfimos

Definição 2.3.1 Seja S um subconjunto não vazio de \mathbb{R} .

- (a) O conjunto S é dito ser **limitado superiormente** se existir $u \in \mathbb{R}$ tal que $s \leq u$ para todo $s \in S$. O número u é uma **cota superior** de S.
- (b) O conjunto S é dito ser limitado inferiormente se existir $w \in \mathbb{R}$ tal que $w \leq s$

para todo $s \in S$. O número w é uma **cota inferior** de S.

(c) O conjunto S é dito ser **limitado** se ele for limitado superior e inferiormente e **ilimitado** se ele não for limitado.

Comentário bounded e limited vs limitado

A título de ilustração, considere os conjuntos \mathbb{R} , \mathbb{N} , $S_1 = \{x \in \mathbb{R} : x < 2\}$, $S_2 = \{x \in \mathbb{R} : x \geq 10\}$ e $S_3 = \{x \in \mathbb{R} : -2 < x < 8\}$. \mathbb{R} é ilimitado (superior e inferiormente), \mathbb{N} é ilimitado (porém limitado superiormente), S_1 é ilimitado (porém limitado inferiormente) e S_3 é ilimitado.

Se um conjunto S tem uma cota superior (inferior), então ele tem infinitas outras cotas superiores (inferiores); ver Figura 2.3.1 (p. 35).

Definição 2.3.2 Seja S um subconjunto não vazio de \mathbb{R} .

- (a) Se S é limitado superiormente, então um número u será o supremo (ou a menor cota superior) de S se ele satisfizer as seguintes duas condições: (1) u é um cota superior de S e (2) se v é uma cota superior de S, então u < v.
- (b) Se S é limitado inferiormente, então um número w será o **infimo** (ou a **maior cota inferior**) de S se ele satisfizer as seguintes duas condições: (1') w é uma cota inferior de S e (2') se t é um cota inferior de S, então t < w.

Nem todo conjunto tem supremo e/ou ínfimo. Por exemplo, o ínfimo do conjunto $\{x \in \mathbb{R} : x \geq 0\}$ é igual a 0. Contudo, esse mesmo conjunto não tem supremo.

Um dado conjunto S tem no máximo um supremo, pois se u_1 e u_2 são cotas superiores de S e $u_1 < u_2$, então u_2 não pode ser a menor cota superior. Similarmente, o ínfimo também é único.

As notações sup S e inf S são bastante populares.

Lema 2.3.3 Um número u é o supremo de um conjunto não vazio $S \subseteq \mathbb{R}$ se e somente se u satisfaz às seguintes condições: (1) $s \leq u$ para todo $s \in S$ e (2) se v < u, então existe $s' \in S$ tal que v < s'.

Prova. Começaremos pela parte "se". A condição (1) implica que u é uma cota superior de S. Adicionalmente, a condição (2) implica que qualquer número menor que u não é uma cota superior de S; desta forma, u é a menor cota superior de S.

Considere agora a parte "somente se". Se u é o supremo de S, então u é uma cota superior de S. Assim sendo, u satisfaz à condição (1). A veracidade da condição (2) será estabelecida por contraposição. Suponha que ela não se verifique. Logo, existe um número $v_0 < u$ tal que $s \le v_0$ para todo $s \in S$. Contudo, isto implica que v_0 é uma cota superior de S. Como $v_0 < u$, u não é a menor cota superior de S. Logo, u não é o supremo de S.

Lema 2.3.4 Uma cota superior u de um conjunto não vazio $S \subseteq \mathbb{R}$ é o supremo de S se e somente se para todo $\varepsilon > 0$ existir um $s_{\varepsilon} \in S$ tal que $u - \varepsilon < s_{\varepsilon}$.

Ver Figura 2.3.2 (p. 37).

É importante ter em mente que o supremo de um conjunto pode ou não pertencer ao conjunto em questão.

Exemplos 2.3.5 (a) Suponha que $S_1 \subseteq \mathbb{R}$ é um conjunto finito e não vazio. O seu supremo é igual ao seu maior elemento, ao passo que o seu ínfimo é igual ao seu menor elemento.

- (b) Considere o conjunto $S_2 = \{x \in \mathbb{R} : 0 \le x \le 1\}$. Claramente, 1 é uma cota superior de S_2 . Por outro lado, se v < 1, então existe $s' \in S_2$ tal v < s' (por exemplo, s' = 1). Logo, sup $S_2 = 1$. Abordagem similar estabelece que inf $S_2 = 0$. Observe que ambos sup S_2 e inf S_2 pertencem a S_2 .
- (c) Considere o conjunto $S_3 = \{x \in R : 0 < x < 1\}$. Assim como no item anterior, 1 é uma cota superior de S_3 . Suponha que v < 1. Se v < 0, então ele claramente não é uma cota superior de S_3 e por tal motivo não pode ser o seu supremo. Se $v \ge 0$, então faça s' = v + (1 v)/2. Observe que 0 < s' < 1; ou seja, $s' \in S_3$. Como s' > v, v não é uma cota superior de S_3 . Logo, 1 é a menor cota superior de S_3 ; desta forma, sup $S_3 = 1$. Raciocínio similar estabelece que inf $S_3 = 0$.

A Propriedade de Completude de \mathbb{R}

Axioma 2.3.6 (A Propriedade de Completude de \mathbb{R}) Todo subconjunto não vazio de \mathbb{R} que possui uma cota superior também possui um supremo em \mathbb{R} .

- Também conhecida como *Propriedade do Supremo de* \mathbb{R} (Supremum Property of \mathbb{R} em inglês).
- Axioma para nós; em abordagens mais sofisticadas essa propriedade é um teorema.
- Intuição: não há buracos (gaps) na linha reta.
- Ver apêndice.

2.4 Aplicações da Propriedade do Supremo

Exemplos 2.4.1 (a) É importante que o supremo e o ínfimo sejam compatíveis com as propriedades algébricas de \mathbb{R} . A título de ilustração, analisaremos a compatibilidade entre a operação de "tomar o supremo" e a soma. Sejam $S \subseteq \mathbb{R}$ um conjunto não vazio

limitado superiormente e a um número real. Defina $T_a = \{a + s : s \in S\}$. Mostraremos que sup $T_a = a + \sup S$. Observe que $a + \sup S$ é uma cota superior de T_a , pois

$$\sup S \ge s, \, \forall s \in S \Rightarrow a + \sup S \ge a + s, \, \forall s \in S.$$

Seja x um real tal que $x < a + \sup S$. Assim sendo,

$$x - a < \sup S \Rightarrow \exists s \in S : x - a < s \Rightarrow \exists s \in S : x < a + s.$$

Logo, x não é uma cota superior de T_a .

(b) Se os supremos ou ínfimos de dois conjuntos estão sendo analisados, frequentemente é necessário aplicar um raciocínio de dois estágios. Por exemplo, sejam A e B dois subconjuntos de \mathbb{R} , ambos limitados, tais que

$$a \le b, \, \forall a \in A, \, \forall b \in B.$$
 (2.5)

Mostraremos que sup $A \leq \sup B$. De fato, como $b \leq \sup B$ para todo $b \in B$, (2.5) implica que $a \leq \sup B$, para todo $a \in A$. Desta forma, $\sup B$ é uma cota superior de A. Como sup A é a menor cota superior de A, $\sup A \leq \sup B$.

Funções _

Dada uma função $f:D\to\mathbb{R}$, nós afirmamos que f é limitada superiormente se o conjunto $f(D)=\{f(x):x\in D\}$ é limitado superiormente. As expressões limitada inferiormente e limitada são definidas de forma similar. Observe que f é limitada se e somente se existir $B\in\mathbb{R}$ tal que $|f(x)|\leq B$ para todo $x\in D$. Esboço da prova:

$$|f(x)| \le B \Rightarrow -B \le f(x) \le B$$

$$b_1 \le f(x) \le b_2 \Rightarrow -|b_1| \le f(x) \le |b_2| \stackrel{*}{\Rightarrow} -B \le f(x) \le B \Rightarrow |f(x)| \le B$$

* Defina $B = \max\{|b_1|, |b_2|\}.$

Exemplo 2.4.2 Sejam f e g duas funções com domínio D que assumem valores em \mathbb{R} . Suponha que f e g são limitadas.

(a) Se $f(x) \leq g(x)$ para todo $x \in D$, então sup $f(D) \leq \sup g(D)$. Para estabelecer esse fato, utilize o raciocínio adotado em 2.4.1(b). Observação: sup f(D) também é denotado por

$$\sup_{x \in D} f(x), \sup_{x} f(x) \in \sup_{x} f.$$

- (b) As hipóteses adotadas no item anterior não permitem que se estabeleça alguma relação entre sup f(D) e inf g(D). A título de ilustração, assuma que $f(x) = x^2$, g(x) = x e $D = \{x \in \mathbb{R} : 0 \le x \le 1\}$. Logo, sup $f = 1 > 0 = \inf g$.
- (c) Suponha que $f(x) \leq g(y)$ para todo $x \in D$ e todo $y \in D$. É possível mostrar que $\sup f(D) \leq \inf g(D)$.

A Propriedade de Arquimedes

Teorema 2.4.3 (A Propriedade de Arquimedes) Se $x \in \mathbb{R}$, então existe $n_x \in \mathbb{N}$ tal que $x < n_x$.

Prova. Dado um número real x, suponha que não exista n_x com a propriedade desejada. Assim sendo, $x \geq n$ para todo $n \in \mathbb{N}$; consequentemente, x é uma cota superior de \mathbb{N} . Desta forma, 2.3.6 implica que \mathbb{N} possui um supremo $u \in \mathbb{R}$. Observe que u-1 não pode ser uma cota superior de \mathbb{N} . Logo, existe $m \in \mathbb{N}$ tal que u-1 < m. Todavia, essa desigualdade é equivalente a u < m+1 e m+1 também pertence a \mathbb{N} . Contudo, isso viola a hipótese de que u é o supremo de \mathbb{N} .

Corolário 2.4.4 Se $S = \{1/n : n \in \mathbb{N}\}$, então inf S = 0.

Corolário 2.4.5 Se t > 0, então existe $n_t \in \mathbb{N}$ tal que $0 < 1/n_t < t$.

Corolário 2.4.6 Se y > 0, então existe $n_y \in \mathbb{N}$ tal que $n_y - 1 \le y < n_y$.

A existência de $\sqrt{2}$

Teorema 2.4.7 Existe um número real positivo x tal que $x^2 = 2$.

Prova. Defina $S = \{s \in \mathbb{R} : s \ge 0 \text{ e } s^2 < 2\}$. Como $1 \in S, S$ não é vazio. Adicionalmente,

$$s \in S \Rightarrow s^2 < 9 \Rightarrow s < 3.$$

Logo, S é limitado superiormente. Assim sendo, S possui um supremo, o qual doravante será denotado por x. Provaremos que $x^2 = 2$ mostrando a impossibilidade dos casos (i) $x^2 < 2$ e (ii) $x^2 > 2$.

Considere o caso (i). Seja y qualquer real positivo que satisfaz $y^2 < 2$. Seja n um natural que satisfaz $n > (2y+1)/(2-y^2)$. Desta forma,

$$\frac{1}{n} < \frac{2 - y^2}{2y + 1} \Rightarrow \frac{2y}{n} + \frac{1}{n} < 2 - y^2 \Rightarrow y^2 + \frac{2y}{n} + \frac{1}{n} < 2 \Rightarrow y^2 + \frac{2y}{n} + \frac{1}{n} < 2 \Rightarrow \left(y + \frac{1}{n}\right)^2 < 2.$$

Logo, $(y+1/n) \in S$. Tendo em vista que y < (y+1/n), y não é o supremo de S.

Adota-se raciocínio similar no caso (ii). Seja, y qualquer real positivo que satisfaz $y^2 > 2$ e n um natural tal que $n > 2y/(y^2 - 2)$. Assim sendo,

$$\frac{1}{n} < \frac{y^2 - 2}{2y} \Rightarrow \frac{2y}{n} < y^2 - 2 \Rightarrow 2 < y^2 - \frac{2y}{n} < y^2 - \frac{2y}{n} + \frac{1}{n^2} = \left(y - \frac{1}{n}\right)^2.$$

Desta forma, se $s \in S$, então

$$s^2 < 2 < \left(y - \frac{1}{n}\right)^2 \Rightarrow s < y - \frac{1}{n}.$$

Logo, (y-1/n) é uma cota superior de S. Como $(y-1/n) < y, y \neq \sup S$.

Comentários (1) Abordagem similar estabelece a existência de outros números reais. (2) Considere o conjunto $T = \{t \in \mathbb{Q} : t \geq 0 \text{ e } t^2 < 2\}$. Se assumíssemos que \mathbb{Q} é completo (no sentido do Axioma 2.3.6), então poderíamos utilizar a prova acima para estabelecer que existe $y \in \mathbb{Q}$ tal que $y^2 = 2$. Contudo, já mostramos que não existe um racional com essa propriedade. Logo, conclui-se que o conjunto \mathbb{Q} não é completo.

A Densidade dos Números Racionais em \mathbb{R}

Teorema 2.4.8 Se x e y são números reais que satisfazem x < y, então existe um número $r \in \mathbb{Q}$ tal que x < r < y.

Prova. Inicialmente, assuma que x > 0. Como y - x > 0, o Corolário 2.4.5 implica que existe $n \in \mathbb{N}$ tal que 0 < 1/n < y - x. Logo, nx + 1 < ny. Aplique o Corolário 2.4.6 para concluir que existe $m \in \mathbb{N}$ que satisfaz $m - 1 \le nx < m$; observe que $m \le nx + 1$. Desta forma,

$$nx < m \le nx + 1 < ny \Rightarrow nx < m < ny \Rightarrow x < m/n < y$$
.

Como $m/n \in \mathbb{Q}$, temos o resultado desejado.

Resta considerar o caso em que $x \leq 0$. Se x = 0, então y > 0. Logo, basta aplicar o Corolário 2.4.5 para concluir que existe $m \in \mathbb{N}$ tal que x = 0 < 1/m < y. Assuma agora que x < 0. Se y > 0, então x < 0 < y. Se y = 0, então existe $m' \in \mathbb{N}$ que satisfaz y = 0 < 1/m' < -x, o que implica que x < -1/m' < y. Por fim, Se x < 0 e y < 0, então o parágrafo anterior estabelece que existe $r \in \mathbb{Q}$ com a propriedade que -y < r < -x. Assim sendo, x < -r < y.

Corolário 2.4.9 Se x e y são números reais que satisfazem x < y, então existe um número irracional z tal que x < z < y.

Comentário Se $r \in \mathbb{Q} \setminus \{0\}$ e $z = r\sqrt{2}$, então z é irracional. Caso contrário, teríamos inteiros p_z , q_z , p_r e q_r , todos diferentes de 0, tais que

$$\frac{p_z}{q_z} = \frac{p_r}{q_r} \sqrt{2} \Rightarrow \sqrt{2} = \frac{p_z q_r}{q_z p_r},$$

de onde se conclui que $\sqrt{2}$ seria um número racional. Evidentemente, é possível substituir $\sqrt{2}$ por um irracional qualquer e obter uma conclusão similar.

2.5 Intervalos

Sejam a e b dois reais que satisfazem a < b. O **intervalo aberto** determinado por a e b é o conjunto $\{x \in \mathbb{R} : a < x < b\}$. Esse conjunto é usualmente denotado por (a, b). Observe que, em tal contexto, (a, b) não é um elemento de \mathbb{R}^2 . Os números a e b são denominados de **extremos**. Listam-se a seguir outros tipos de intervalos:

intervalo fechado $[a,b] = \{x \in \mathbb{R} : a \le x \le b\};$

intervalos semiabertos (ou **semifechados**) $[a,b) = \{x \in \mathbb{R} : a \le x < b\}$ e $(a,b] = \{x \in \mathbb{R} : a < x \le b\}$;

intervalos abertos infinitos $(a, \infty) = \{x \in \mathbb{R} : x > a\} \text{ e } (-\infty, b) = \{x \in \mathbb{R} : x < b\};$ intervalos fechados infinitos $[a, \infty) = \{x \in \mathbb{R} : x \geq a\} \text{ e } (-\infty, b] = \{x \in \mathbb{R} : x \leq b\}.$

Observe que ∞ e $-\infty$ não são elementos de \mathbb{R} . No caso dos intervalos aberto, fechado e semiabertos, a diferença b-a corresponde ao **comprimento** do intervalo. Vale ressaltar que $(a, a) = \emptyset$, $[a, a] = \{a\}$ e $(a, a] = [a, a) = \emptyset$.

Caracterização dos Intervalos _____

Teorema 2.5.1 (Caracterização dos Intervalos) Se S é um subconjunto de \mathbb{R} que contém pelo menos dois elementos e tem a propriedade

$$x, y \in S \& x < y \Rightarrow [x, y] \subseteq S,$$
 (1)

então S é um intervalo.

Prova. Há quatro casos a serem considerados: (i) S é limitado, (ii) S é limitado superiormente mas não inferiormente, (iii) S é limitado inferiormente mas não superiormente e (iv) S é ilimitado superior e inferiormente.

Considere inicialmente o caso (i). Sejam a e b, respectivamente, o ínfimo e o supremo de S. Logo, $S \subseteq [a,b]$. Mostraremos que $(a,b) \subseteq S$. Seja z um elemento qualquer de (a,b). Observe que z não é uma cota inferior de S. Desta forma, existe $x \in S$ tal que x < z. Similarmente, o fato de z não ser uma cota superior de S implica que z < y para algum $y \in S$. Assim sendo, $z \in [x,y]$. Aplique a propriedade (1) para concluir que $z \in S$. Podemos então concluir que os únicos elementos de [a,b] que podem não pertencer a S são justamente os extremos a e b. Logo, S é um intervalo.

Analisaremos agora o caso (ii). Seja b o supremo de S. Por tal motivo, $S \subseteq (-\infty, b]$. Mostraremos que $(-\infty, b) \subseteq S$. Selecione qualquer elemento z de $(-\infty, b)$. Como z < b, existem números x e y, com x < y, pertencentes a S tais que $z \in [x, y]$. Aplique (1) para concluir que $z \in S$. Desta forma, b é o único elemento de $(-\infty, b]$ que talvez não pertença a S. Isto implica que $S = (-\infty, b]$ ou $S = (-\infty, b)$. Logo, S é um intervalo.

Considere agora o caso (iii). Seja a o ínfimo de S. Se $z \in (a, \infty)$, então há números x e y, com x < y, pertencentes a S tais que $z \in [x, y]$. A propriedade (1) implica que $z \in S$. Desta forma, $(a, \infty) \subseteq S \subseteq [a, \infty)$. Assim sendo, S é igual a (a, ∞) ou a $[a, \infty)$.

Por fim, considere o caso (iv). Seja z um real qualquer. Logo, existem x e y em S tais que $z \in [x, y]$. Mais uma vez, (1) implica que $z \in S$. Desta forma, $S = \mathbb{R}$.

2.5.1 Intervalos Aninhados _

Uma sequência I_n , $n \in \mathbb{N}$, de intervalos é dita ser **aninhada** se $I_1 \supseteq I_2 \supseteq \cdots \supseteq I_n \supseteq I_{n+1} \supseteq \cdots$; ver Figura 2.5.1 (p. 46). Por exemplo, as três sequências $I_n = [0, 1/n]$, $J_n = (0, 1/n)$ e $K_n = (n, \infty)$, $n \in \mathbb{N}$, são aninhadas. É possível mostrar que $\bigcap_{n=1}^{\infty} I_n = \{0\}$, $\bigcap_{n=1}^{\infty} J_n = \emptyset$ e $\bigcap_{n=1}^{\infty} K_n = \emptyset$.

Teorema 2.5.2 (Propriedade dos Intervalos Aninhados) Se $I_n = [a_n, b_n], n \in \mathbb{N}$, é uma sequência aninhada de intervalos fechados e limitados, então existe um número $\gamma \in I_n$ para todo $n \in \mathbb{N}$.

Prova. Como $I_n \subseteq I_1$ para todo $n \in \mathbb{N}$, $a_n \leq b_1$ para todo $n \in \mathbb{N}$. Assim sendo, o conjunto $\{a_k : k \in \mathbb{N}\}$ é limitado superiormente. Seja γ o seu supremo. Claramente, $\gamma \geq a_n$ para todo $n \in \mathbb{N}$.

Mostraremos agora que $\gamma \leq b_n$ para todo $n \in \mathbb{N}$. Fixe $m \in \mathbb{N}$ e considere o conjunto $\{a_k : k \in \mathbb{N}\}$. Seja k é um natural qualquer. Suponha que $k \geq m$. Logo, $I_k \subseteq I_m$, o que implica $a_k \leq b_k \leq b_m$. Assuma agora que k < m. Nesse caso, $I_m \subseteq I_k$. Desta forma, $a_k \leq b_m$. Como m pode ser qualquer número natural, $a_k \leq b_m$ para quaisquer k e m naturais. Logo, b_m é uma cota superior de $\{a_k : k \in \mathbb{N}\}$. Como γ é a menor cota superior desse conjunto, $\gamma \leq b_n$ para todo $n \in \mathbb{N}$. Por fim, como $a_n \leq \gamma \leq b_n$, $\gamma \in I_n$ para todo $n \in \mathbb{N}$.

Teorema 2.5.3 Se $I_n = [a_n, b_n], n \in \mathbb{N}$, é uma sequência aninhada de intervalos fechados e limitados tal que $\inf\{b_n - a_n : n \in \mathbb{N}\} = 0$, então o número $\gamma \in I_n$ para todo $n \in \mathbb{N}$ é único.

A Incontabilidade de \mathbb{R}

Teorema 2.5.4 O conjunto \mathbb{R} é incontável.

Prova. É suficiente mostrar que o conjunto I = [0,1] é incontável. A prova será feita por contradição. Assuma que I é contável. Logo, podemos enumerar os seus elementos e escrever $I = \{x_1, x_2, \cdots, x_n, \cdots\}$. Seja I_1 um intervalo fechado contido em I tal que $x_1 \notin I_1$. Em seguida, selecione um intervalo fechado $I_2 \subseteq I_1$ tal que $x_2 \notin I_2$. Repita esse procedimento de forma a ter uma sequência aninhada I_n , $n \in \mathbb{N}$, tal que $x_n \notin I_n$ para todo n. Agora, observe que

$$x_n \notin \bigcap_{k=1}^{\infty} I_k, \, \forall n \in \mathbb{N} \Rightarrow \bigcap_{k=1}^{\infty} I_k = \emptyset.$$

Como a última igualdade contradiz o Teorema 2.5.2, o conjunto I não pode ser contável. \square

Apêndice

Seja $S \neq \emptyset$ um subconjunto qualquer de \mathbb{R} . Dado S, construa o conjunto T de forma que $T = \{t \in \mathbb{R} : t = -s, s \in S\}$.

Proposição 1 Se S é limitado superiormente, então T é limitado inferiormente e inf $T = -\sup S$.

Prova. Seja S um conjunto limitado superiormente e \bar{s} o seu supremo. Logo, para todo $s \in S$,

$$s < \bar{s} \implies -\bar{s} < -s$$
.

Isto implica que $-\bar{s} \leq t$ para todo $t \in T$. Desta forma, $-\bar{s}$ é uma cota inferior de T. Seja x qualquer número tal que $x > -\bar{s}$. Assim sendo, $-x < \bar{s}$. Por tal motivo, existe $s_x \in S$ tal que $-x < s_x$. Logo, $-s_x < x$, sendo que $-s_x \in T$. Concluímos então que x não é uma cota inferior de T. Este último resultado implica que $-\bar{s}$ é a maior cota inferior de T.

Corolário 1 Se S é limitado inferiormente, então T é limitado superiormente e sup $T = -\inf S$.

Esboço da prova: mostre que T é limitado superiormente (logo, ele tem um supremo) e aplique a Proposição 1.

Combinado com o Axioma da Completude, o Corolário 1 implica que todo subconjunto não vazio de \mathbb{R} que possui uma cota inferior também possui um ínfimo em \mathbb{R} .

Corolário 2 Se S é limitado, então: (i) T é limitado, (ii) inf $T = -\sup S$ e (iii) $\sup T = -\inf S$.

Prova. Combine a Proposição 1 com o Corolário 2 para obter o resultado desejado. □