ANÁLISE MATEMÁTICA PARA ECONOMISTAS: NOTAS DE AULA

Este documento consiste em notas de aula para o Capítulo 1 de Bartle & Sherbert (*Introduction to Real Analysis.* 3ª edição. Nova Iorque: John Wiley & Sons, 2000).

Elaboração: Alexandre B. Cunha

1 Preliminares

Os autores numeram as expressões, por capítulo, na forma (1), (2),... Quando houver uma expressão numerada dessa forma nas notas de aula, então isso significa que a expressão em questão (ou outra bem similar) aparece no livro-texto com o mesmo número. Uma expressão numerada na forma (X.1), (X.2),... ou não aparece no livro ou aparece mas não está numerada. Observe que X corresponde ao número do capítulo em estudo. Essa convenção se aplica para todas as notas de aula para Bartle & Sherbert.

1.1 Conjuntos e Funções

- notação
 - $-x \in A$: x pertence a A
 - $-x \notin A$: x não pertence a A
 - $A \subseteq B$: A é um subconjunto de B
 - $-A \subset B$: A é um subconjunto próprio de B $(A \subseteq B \in A \neq B)$

Definição 1.1.1 Os conjuntos A e B são **iguais**, e nós escrevemos A = B, se eles contêm os mesmos elementos.

Comentário Uso de "se" (if) em definições.

Para estabelecer que A e B são iguais, é suficiente mostrar que $A\subseteq B$ e $B\subseteq A$. Ou seja,

$$A = B \iff [A \subseteq B \& B \subseteq A].$$

Normalmente, um conjunto é definido ou se listando todos os seus elementos ou pela especificação de uma propriedade que determine os elementos do conjunto. Exemplo:

$$A = \{x \in S : P(x)\}.$$

Vale ressaltar que se S estiver claro em um dado contexto, então ele pode ser omitido. Listam-se a seguir alguns conjuntos importantes.

Números naturais: $\mathbb{N} = \{1, 2, 3, \dots\}$.

Números inteiros: $\mathbb{Z} = \{0, 1, -1, 2, -2, \dots\}.$

Números Racionais: $\mathbb{Q} = \{m/n : m, n \in \mathbb{Z} \text{ e } n \neq 0\}.$

Números reais: \mathbb{R} (será discutido em detalhes no capítulo 2).

Exemplos 1.1.2 (a)
$$\{x \in \mathbb{N} : x^2 - 3x + 2 = 0\} = \{1, 2\}$$

(b) $\{2k : k \in \mathbb{N}\}$ (pares), $\{2k - 1 : k \in \mathbb{N}\}$ (impares)

Operações com Conjuntos _

Definição 1.1.3 (a) A união dos conjuntos $A \in B$ é o conjunto $A \cup B = \{x : x \in A \text{ ou } x \in B\}.$

- (b) A interseção dos conjuntos $A \in B$ é o conjunto $A \cap B = \{x : x \in A \in x \in B\}$.
- (c) O complemento de B com relação a A é o conjunto $A \setminus B = \{x : x \in A \in x \notin B\}.$

Figura 1.1.1 (p. 3).

Conjunto vazio: \emptyset ({} em alguns textos)

Os conjuntos A e B são disjuntos se $A \cap B = \emptyset$.

Teorema 1.1.4 (Leis de DeMorgan) Se $A, B \in C$ são conjuntos, então:

- (a) $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C);$
- **(b)** $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.

Prova do item (a). Mostraremos que $A \setminus (B \cup C) \subseteq (A \setminus B) \cap (A \setminus C)$ e $(A \setminus B) \cap (A \setminus C) \subseteq A \setminus (B \cup C)$. Seja x um elemento qualquer de $A \setminus (B \cup C)$. Logo,

$$x \ \in \ A e \ x \not\in B \cup C \implies x \in A e \ x \not\in B e \ x \not\in C \implies$$

$$(x \in A \in x \notin B) \in (x \in A \in x \notin C) \implies x \in A \backslash B \in x \in A \backslash C \implies$$

$$x \in (A \backslash B) \cap (A \backslash C).$$

Assim sendo, $A \setminus (B \cup C) \subseteq (A \setminus B) \cap (A \setminus C)$.

Com relação à outra inclusão, observe que

$$x \in (A \backslash B) \cap (A \backslash C) \implies x \in A \backslash B \in x \in A \backslash C \implies$$

 $(x \in A \in x \notin B) \in (x \in A \in x \notin C) \implies x \in A \in x \notin B \in x \notin C \implies$
 $x \in A \in x \notin B \cup C \implies x \in A \backslash (B \cup C).$

Desta forma, $(A \setminus B) \cap (A \setminus C) \subseteq A \setminus (B \cup C)$.

Uniões e interseções com famílias de conjuntos Considere a família $\{A_1, A_2, A_3, \cdots\}$.

$$\bigcup_{n=1}^{k} A_n = \{x : x \in A_n \text{ para algum } n \in \{1, 2, \dots, k\}\}$$

$$\bigcap_{n=1}^{k} A_n = \{x : x \in A_n \text{ para todo } n \in \{1, 2, \dots, k\}\}$$

$$\bigcup_{n=1}^{\infty} A_n = \{x : x \in A_n \text{ para algum } n \in \mathbb{N}\}$$

$$\bigcap_{n=1}^{\infty} A_n = \{x : x \in A_n \text{ para todo } n \in \mathbb{N}\}$$

Produtos Cartesianos _

Definição 1.1.5 Sejam $A \in B$ dois conjuntos não vazios. O **produto cartesiano** $A \times B$ de $A \in B$ é o conjunto de todos os pares ordenados (a, b) tais que $a \in A$ e $b \in B$. Isto é,

$$A \times B = \{(a,b) : a \in A, b \in B\}.$$

Por exemplo, se $A = \{1, 2, 3\}$ e $B = \{1, 5\}$, então

$$A \times B = \{(1,1), (1,5), (2,1), (2,5), (3,1), (3,5)\}.$$

O conjunto \mathbb{R}^2 também é um produto cartesiano.

Podemos agora discutir o conceito de função. No começo do século 19 a palavra função designava uma fórmula bem definida; por exemplo, $f(x) = x^2 + 3x - 5$. Contudo, os matemáticos desejavam ter um conceito mais geral. Adicionalmente, era necessário fazer uma distinção precisa entre a função propriamente dita e os seus valores. Assim sendo, uma definição alternativa seria a seguinte:

Uma função f do conjunto A no conjunto B é uma regra de correspondência que atribui a cada elemento x de A um único elemento f(x) em B.

Contudo, há um problema na definição acima: como interpretar a expressão regra de correspondência? Dito isto, apresenta-se a seguir uma definição mais precisa do conceito em questão.

Definição 1.1.6 Sejam $A \in B$ dois conjuntos. Uma **função** de A em B é um conjunto f de pares ordenados em $A \times B$ com a propriedade que para cada $a \in A$ existe um único $b \in B$ tal que $(a, b) \in f$.

Comentários (a) Se (a, b) e (a, b') pertencem a f, então b = b'. (b) Atenção ao trecho "para cada $a \in A$ "; todo elemento de A...

A título de ilustração, considere os conjuntos $A = \{a_1, a_2\}$ e $B = \{b_1, b_2\}$, onde $a_1 \neq a_2$ e $b_1 \neq b_2$. Assim sendo, $A \times B = \{(a_1, b_1), (a_1, b_2), (a_2, b_1), (a_2, b_2)\}$. O conjunto $f = \{(a_1, b_1), (a_2, b_2)\}$ é uma função. O conjunto $A \times B$ não é uma função; o mesmo vale para os conjuntos $\{(a_1, b_1), (a_1, b_2)\}$, $\{(a_1, b_2), (a_2, b_1), (a_2, b_2)\}$ e $\{(a_2, b_2)\}$.

O conjunto A é o **domínio** de f e também é denotado for D(f), ao passo que o conjunto B é o **contradomínio** (codomain em inglês) de f. O conjunto R(f) de todas as segundas coordenadas dos elementos de f é chamado de **imagem** (range ou image em inglês). Observe que D(f) = A, enquanto pode ocorrer que $R(f) \subset B$. Adicionalmente, f(a) é o **valor** de f no ponto a (ou a **imagem** de a por f). A representação $f: A \to B$ é bastante comum.

Transformações e Máquinas

Figuras 1.1.5 e 1.1.6 (p. 6).

Imagem Direta e Imagem Inversa _

Seja $f: A \to B$ uma função.

Definição 1.1.7 Se E é um subconjunto de A, então a **imagem direta** de E por f é o subconjunto f(E) de B dado por

$$f(E) = \{ f(x) \in B : x \in E \}.$$

Se H é um subconjunto de B, então a **imagem inversa** de H por f é o subconjunto $f^{-1}(H)$ de A dado por

$$f^{-1}(H) = \{ x \in A : f(x) \in H \}.$$

Comentário No contexto dessa definição, f^{-1} não é a função inversa (que pode até não existir).

Exemplos 1.1.8 (a) Considere a função $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$. Sejam $E, G \in H$ os conjuntos dados por $E = \{x: 0 \le x \le 2\}$, $G = \{y: 0 \le y \le 4\}$ e $H = \{y: -1 \le y \le 1\}$. Desta forma, f(E) = G; por outro lado, $f^{-1}(G) = \{x: -2 \le x \le 2\}$. Assim sendo, $f^{-1}(f(E)) \ne E$. Contudo, $f(f^{-1}(G)) = G$. Ademais, $f^{-1}(H) = \{x: -1 \le x \le 1\}$ e $f(f^{-1}(H)) = \{y: 0 \le y \le 1\} \ne H$. Convém esboçar um gráfico (identifique os conjuntos $E, f(E), f^{-1}(f(E)), G, f^{-1}(G), f(f^{-1}(G)), H, f^{-1}(H)$ e $f(f^{-1}(H))$. (b) Sejam $f: A \to B$ uma função e $G \in H$ subconjuntos de B. Mostraremos que $f^{-1}(G \cap H) \subseteq f^{-1}(G) \cap f^{-1}(H)$. Suponha que $x \in f^{-1}(G \cap H)$. Logo, $f(x) \in G \cap H$. Assim sendo, $f(x) \in G$ e $f(x) \in H$, de onde se conclui que $x \in f^{-1}(G)$ e $x \in f^{-1}(H)$. Desta maneira, $x \in f^{-1}(G) \cap f^{-1}(H)$.

Tipos Especiais de Funções

Definição 1.1.9 Seja $f: A \to B$ uma função.

- (a) A função f é dita ser **injetiva** se $x_1 \neq x_2$ implica que $f(x_1) \neq f(x_2)$.
- (b) A função f é dita ser sobrejetiva se f(A) = B; ou seja, se R(f) = B.
- (c) A função f é dita ser bijetiva se ela for injetiva e sobrejetiva.

Para mostrar que uma função f é injetiva, é preciso mostrar que para todo x_1, x_2 em A,

$$f(x_1) = f(x_2) \implies x_1 = x_2.$$

Se A e B são subconjuntos de \mathbb{R} e f é injetiva, então o seu gráfico satisfaz o primeiro teste da linha horizontal: toda linha horizontal corta o gráfico de f no máximo uma vez. (Desenhar gráfico.)

Para mostrar que uma função f é sobrejetiva, é preciso mostrar que para todo $b \in B$ existe $x \in A$ tal que f(x) = b. Se A e B são subconjuntos de \mathbb{R} e f é sobrejetiva, então o seu gráfico satisfaz o segundo teste da linha horizontal: toda linha horizontal corta o gráfico de f pelo menos uma vez. (Desenhar gráfico.)

Exemplo 1.1.10 Considere a função $f: A \to \mathbb{R}$, onde $A = \{x \in \mathbb{R} : x \neq 1\}$ e f(x) = 2x/(x-1). Mostraremos que f é injetiva. Sejam x_1 e x_2 dois elementos de A tais que $f(x_1) = f(x_2)$. Desta forma,

$$\frac{2x_1}{x_1 - 1} = \frac{2x_2}{x_2 - 1} \implies x_1 x_2 - x_1 = x_1 x_2 - x_2 \implies x_1 = x_2.$$

Essa função não é sobrejetiva, pois $R(f) \neq \mathbb{R}$. Para verificar tal fato, resolva a equação y = 2x/(x-1) para x. Esse procedimento estabelece que x = y/(y-2). Logo, não existe $x \in A$ tal que f(x) = 2. Assim sendo, $2 \notin R(f)$. Adicionalmente, para cada $y \in \mathbb{R} \setminus \{2\}$, existe exatamente um único x tal que f(x) = y. Assim sendo, $R(f) = \mathbb{R} \setminus \{2\}$. Por fim, a função $g: A \to \mathbb{R} \setminus \{2\}$, onde g(x) = f(x), é uma bijeção.

Comentário A função g acima é denotada por f no livro-texto.

Funções Inversas

Definição 1.1.11 Se $f: A \to B$ é uma bijeção, então $g = \{(b, a) \in B \times A : (a, b) \in f\}$ é uma função de B em A. Tal função é denominada a **função inversa** de f e é denotada por f^{-1} .

Comentários (a) Observe que $D(f) = R(f^{-1})$, $R(f) = D(f^{-1})$ e b = f(a) se e somente se $a = f^{-1}(b)$. A título de ilustração, considere a função g definida no fim do Exemplo 1.1.10. A sua função inversa é dada por $g^{-1}(y) = y/(y-2)$. (b) Mesma notação (f^{-1}) utilizada para função inversa e imagem inversa.

Composição de Funções

Em contextos diversos, desejamos efetuar uma composição de funções. Ou seja, dada um ponto x, avalia-se f(x) e em seguida se avalia o valor de g no ponto f(x). Por exemplo, a curva de oferta de uma firma competitiva é dada pela composição da sua função de produção com a demanda por insumos. Esboço: Y = F(L), $L^D = h(W/P)$ e $Y^S = F(h(W/P))$.

Definição 1.1.12 Sejam $f: A \to B_1$ e $g: B_2 \to C$ são duas funções tais que $R(f) \subseteq B_2$, então a **função composta** $g \circ f$ é a função de A em C definida por $(g \circ f)(x) = g(f(x))$ para todo $x \in A$.

Comentários (a) Definição do livro: $f: A \to B \in g: B \to C$; a definição acima é um pouco mais geral. (b) A passagem $R(f) \subseteq D(g) = B$ na definição do livro é redundante.

Exemplos 1.1.13 (a) A ordem da composição é relevante. Por exemplo, se f(x) = 2x e $g(x) = 3x^2 - 1$, então $(g \circ f)(x) = 12x^2 - 1$ e $(f \circ g)(x) = 6x^2 - 2$. **(b)** Verifique a condição $R(f) \subseteq D(g)$.

Teorema 1.1.14 Se $f: A \to B$ e $g: B \to C$ são duas funções e H um subconjunto de C, então $(g \circ f)^{-1}(H) = f^{-1}(g^{-1}(H))$.

Prova. Suponha que $a \in (g \circ f)^{-1}(H)$. Logo, $g(f(a)) \in H$. Contudo, isso implica que $f(a) \in g^{-1}(H)$, de onde se conclui que $a \in f^{-1}(g^{-1}(H))$. Desta forma, $(g \circ f)^{-1}(H) \subseteq f^{-1}(g^{-1}(H))$. Assuma agora que $a \in f^{-1}(g^{-1}(H))$. Logo, $f(a) \in g^{-1}(H)$. Entretanto, essa condição implica que $g(f(a)) \in H$, o que tem como consequência $a \in (g \circ f)^{-1}(H)$. Assim sendo, $f^{-1}(g^{-1}(H)) \subseteq (g \circ f)^{-1}(H)$.

Restrições nos Domínios

• Título original: Restrictions of Functions.

Sejam $f: A \to B$ uma função e A_1 um subconjunto próprio de A. Defina $f_1: A_1 \to B$ de forma que $f_1(x) = f(x)$ para todo $x \in A_1$. A função f_1 é a **restrição de** f **em** A_1 .

Qual é a razão para restringir o domínio? A título de exemplo, considere a função $f: \mathbb{R} \to \mathbb{R}_+, f(x) = x^2$. Ela não possui inversa. Todavia, $f_1: \mathbb{R}_+ \to \mathbb{R}_+, f_1(x) = x^2$ possui uma inversa.

1.2 Indução Matemática

Axioma 1.2.1 (A Propriedade da Boa Ordenação dos Naturais) Todo subconjunto não vazio de N tem um elemento mínimo.

Comentário Os autores não usam o "label" axioma. Contudo, eles mencionam que estão assumindo que os naturais possuem a propriedade em questão.

Esse axioma nos permite obter o Teorema 1.2.2 (Princípio da Indução Matemática) e o resultado que se segue.

- 1.2.3 Princípio da Indução Matemática (segunda versão) Seja n_0 um número natural e P(n) uma afirmativa definida para cada natural $n \ge n_0$. Suponha que:
- (1) A afirmativa $P(n_0)$ é verdadeira.
- (2) Para todo $k \ge n_0$, $[P(k) \implies P(k+1)]$.

Então P(n) é verdadeira para todo $n \ge n_0$.

Exercício 13 (seção 1.2) Mostre que $n < 2^n$ para todo $n \in \mathbb{N}$. Aplicaremos o Princípio da Indução. Seja P(n) a afirmativa $n < 2^n$. Como $1 < 2^1$, P(1) é verdadeira. Suponha que, para um n genérico, P(n) se verifique. Logo,

$$n < 2^n \implies 2n < 2^{n+1} \implies n + n < 2^{n+1} \implies n + 1 < 2^{n+1}$$
.

Assim sendo, P(n+1) é verdadeira.

Comentário Tentativa fracassada do seu professor: $n < 2^n \implies n+1 < 2^n+1 \implies ?$. Contudo, ele poderia ter usado o fato que $1 < 2^n$ para concluir, pois $2^n + 1 < 2^n + 2^n = 2^n(1+1) = 2^{n+1}$.

• Ver comentários adicionais no fim deste documento.

1.3 Conjunto Finitos e Infinitos

A contagem dos elementos de um conjunto S envolve criar uma bijeção entre S e um subconjunto de \mathbb{N} . Se a contagem jamais se encerra, então S é um conjunto infinito. Dentre outras coisas, nesta subseção definiremos conceitos como *conjunto finito* e *conjunto infinito*.

Definição 1.3.1 (a) O conjunto vazio ∅ é dito ter 0 **elementos**.

- (b) Um conjunto S é dito ter $n \in \mathbb{N}$ elementos se existir uma bijeção entre S e o conjunto $\mathbb{N}_n = \{1, 2, \dots, n\}$.
- (c) Um conjunto S é dito ser finito se ele ou é vazio ou tem $n \in \mathbb{N}$ elementos.
- (d) Um conjunto S é dito ser **infinito** se ele não é finito.

Comentário Uso de negrito nos items (a) e (b).

Teorema 1.3.2 (Unicidade) Se S é um conjunto finito, então o número de elementos de S é um único numero em $\mathbb{N} \cup \{0\}$.

Comentários (1) Livro: \mathbb{N} ao invés de $\mathbb{N} \cup \{0\}$. (2) A prova decorre do fato que se $n \neq m$, então não se pode criar uma bijeção de \mathbb{N}_n em \mathbb{N}_m .

Teorema 1.3.3 O conjunto \mathbb{N} é infinito.

Comentário A prova decorre do fato que se não se pode criar uma bijeção de \mathbb{N} em \mathbb{N}_n .

Teorema 1.3.4 (a) Se A é um conjunto com m elementos, B é um conjunto com n elementos e $A \cap B = \emptyset$, então $A \cup B$ tem m + n elementos.

- (b) Se A é um conjunto com m elementos e $C \subseteq A$ tem 1 elemento, então $A \setminus C$ tem m-1 elementos.
- (c) Se C é um conjunto infinito e B é um conjunto finito, então $C \backslash B$ é um conjunto infinito.

Prova do item (a). Sejam $f: \mathbb{N}_m \to A \in g: \mathbb{N}_n \to B$ duas bijeções. Defina $h: \mathbb{N}_{m+n} \to A \cup B$ de forma que

$$h(i) = \begin{cases} f(i), \text{ se } i = 1, \dots, m, \\ g(i-m), \text{ se } i = m+1, \dots, m+n. \end{cases}$$
 (1.1)

Mostraremos que h é injetiva e sobrejetiva.

Considere inicialmente a primeira propriedade. Sejam i e j dois elementos distintos de \mathbb{N}_{m+n} . Se ambos pertencem a $\{1, \dots, m\}$, então o fato de f ser injetiva implica

que $h(i) \neq h(j)$; similarmente, o fato de g ser uma injeção assegura que $h(i) \neq h(j)$ se i e j pertencem a $\{m+1,\dots,m+n\}$. Suponha agora que $i \in \{1,\dots,m\}$ e $j \in \{m+1,\dots,m+n\}$. A definição de h implica que $h(i) \in A$ e $h(j) \in B$. Como $A \cap B = \emptyset$, $h(i) \neq h(j)$. Desta forma, h é uma injeção.

Com relação à segunda propriedade, seja y um elemento qualquer de $A \cup B$. Se $y \in A$, então o fato de f ser sobrejetiva implica que existe $i \in \mathbb{N}_m$ tal que f(i) = y. Por sua vez, (1.1) implica que h(i) = y. Suponha agora que $y \in B$. Como g é sobrejetiva, g(j) = y para algum $j \in \mathbb{N}_n$. Por fim, (1.1) estabelece que h(j + m) = y.

Teorema 1.3.5 Sejam S e T dois conjuntos tais que $T \subseteq S$.

- (a) Se S é finito, então T é finito.
- (b) Se T é infinito, então S é infinito.

Prova. Como (a) e (b) são afirmativas contrapositivas, basta estabelecer (a). Se $T = \emptyset$, então não há o que provar. Desta forma, doravante suponha que $T \neq \emptyset$. Seja P(n) a afirmativa todo subconjunto não vazio de um conjunto S com $n \in \mathbb{N}$ elementos é finito. Basta estabelecer a sua veracidade para concluir a prova. Para tanto, utilizaremos o Princípio da Indução.

Se n = 1, então o único subconjunto não vazio de S é o próprio S. Logo, T = S e T é finito. Assim sendo, P(1) é verdadeira.

Suponha agora que P(k) é verdadeira para um k genérico. Sejam S um conjunto com k+1 elementos, $f: \mathbb{N}_{k+1} \to S$ uma bijeção e T um subconjunto de S. Existem duas possibilidades: (i) $f(k+1) \notin T$ e (ii) $f(k+1) \in T$. Assuma que (i) seja verdade. Logo, $T \subseteq S \setminus \{f(k+1)\}$. Pelo item (b) do Teorema 1.3.4, $S \setminus \{f(k+1)\}$ tem k elementos. Como P(k) é verdadeira, T é finito. Considere agora a possibilidade (ii). Nesse caso, podemos afirmar que $T \setminus \{f(k+1)\} \subseteq S \setminus \{f(k+1)\}$, de onde se conclui que $T \setminus \{f(k+1)\}$ é finito – pois $S \setminus \{f(k+1)\}$ tem k elementos e assumimos que P(k) é verdadeira. Como $T = (T \setminus \{f(k+1)\}) \cup \{f(k+1)\}$, um apelo ao item (a) do Teorema 1.3.4 estabelece que T é finito.

Conjuntos Contáveis

Definição 1.3.6 (a) Um conjunto S é **enumerável** se existir uma bijeção de \mathbb{N} em S.

- (b) Um conjunto S é **contável** se ele é ou finito ou enumerável.
- (c) Um conjunto S é **incontável** se ele não é contável.

Exemplos 1.3.7 (a) O conjunto $E = \{2n : n \in \mathbb{N}\}$ dos números pares é enumerável, pois o mapa $f : \mathbb{N} \to E$ definido por f(n) = 2n é uma bijeção.

(b) O conjunto Z dos números inteiros é enumerável. Intuição:

$$\mathbb{Z} = \{0, 1, -1, 2, -2, \dots\},\$$

 $\mathbb{N} = \{1, 2, 3, 4, 5, \dots\}.$

De fato, a função $f: \mathbb{N} \to \mathbb{Z}$ definida por

$$f(n) = \begin{cases} \frac{n}{2}, \text{ se } n \text{ \'e par} \\ -\frac{n-1}{2}, \text{ se } n \text{ \'e impar} \end{cases}$$

é uma bijeção.

(c) Sejam $A = \{a_1, a_2, a_3, \dots\}$ $e B = \{b_1, b_2, b_3, \dots\}$ dois conjuntos enumeráveis e disjuntos. O conjunto $A \cup B$ é enumerável. Intuição: $A \cup B = \{a_1, b_1, a_2, b_2, a_3, b_3, \dots\}$. \square

Teorema 1.3.8 O conjunto $\mathbb{N} \times \mathbb{N}$ é enumerável.

Ver Figura 1.3.1 (p. 19).

Teorema 1.3.9 Sejam $S \in T$ dois conjuntos tais que $T \subseteq S$.

- (a) Se S é contável, então T é contável.
- (b) Se T é incontável, então S é incontável.

A prova está disponível no Apêndice B do livro-texto.

Teorema 1.3.10 Seja S um conjunto não vazio. As seguintes afirmativas são equivalentes:

- (a) O conjunto S é contável.
- (b) Existe uma sobrejeção de \mathbb{N} em S.
- (c) Existe uma injeção de S em \mathbb{N} .

Comentário O livro não menciona a condição $S \neq \emptyset$. Porém, sem essa condição pelo menos a afirmativa $[(a) \implies (b)]$ é falsa.

Prova. Mostraremos que $[(a) \implies (b) \implies (c) \implies (a)]$. Considere inicialmente a afirmativa $[(a) \implies (b)]$. Suponha que S é contável. Se S é finito, então existe uma bijeção h entre algum conjunto \mathbb{N}_n e S. Defina $H: \mathbb{N} \to S$ de forma que

$$H(k) = \begin{cases} h(k) \text{ se } k = 1, \dots, n, \\ h(n) \text{ se } k > n. \end{cases}$$

Observe que H é uma sobrejeção. Se S é enumerável, então existe uma bijeção $H: \mathbb{N} \to S$, a qual evidentemente é uma sobrejeção de $\mathbb{N} \to S$.

Com relação à afirmativa [(b) \Longrightarrow (c)], assuma que $H: \mathbb{N} \to S$ é uma sobrejeção. Defina a função $H_1: S \to \mathbb{N}$ de forma que

$$H_1(s) = \min\{n \in \mathbb{N} : H(n) = s\}.$$

Para concluir que H_1 é uma injeção, observe que se $s, t \in S$ e $H_1(s) = H_1(t) = \bar{n}$, então $H(\bar{n}) = s$ e $H(\bar{n}) = t$. Logo, s = t.

Por fim, considere a afirmativa $[(c) \Longrightarrow (a)]$. Se $G_1: S \to \mathbb{N}$ é uma injeção, então $G_2: S \to G_1(S), \ G_2(s) = G_1(s)$, é uma bijeção. Como $G_1(S) \subseteq \mathbb{N}$, o item (a) do Teorema 1.3.9 tem como consequência que $G_1(S)$ é contável. Logo, existe uma bijeção G_3 de $G_1(S)$ em um subconjunto T de \mathbb{N} . Considere agora a função $G_3 \circ G_2: S \to T$. Essa função é uma bijeção (ver Exercício 19 da Seção 1.1). Desta forma, S é contável. \square

Comentário Um diagrama pode ser útil para a compreensão do último parágrafo da prova.

Teorema 1.3.11 O conjunto \mathbb{Q} dos números racionais é enumerável.

Ver Figura 1.3.2 (p. 20).

Teorema 1.3.12 Se A_m é contável para todo $m \in N$, então o conjunto $\bigcup_{m=1}^{\infty} A_m$ é contável.

Teorema de Cantor 1.3.13 Seja A um conjunto qualquer. Não existe uma sobrejeção de A no conjunto $\mathcal{P}(A)$ de todos os subconjuntos de A.

Comentário O resultado acima implica que $\mathcal{P}(\mathbb{N})$ é incontável.

O Princípio da Indução: Comentários Adicionais

• "Fora do livro".

Sejam q um número real diferente de 1, n um número natural e P(n) a afirmativa

$$\sum_{i=1}^{n} q^{i} = \frac{q - q^{n+1}}{1 - q}.$$
(1.2)

Suponha que se deseje provar que P(n) é verdade para todo n. Evidentemente, não é viável provar individualmente cada uma dessas infinitas afirmativas. Contudo, é suficiente provar que: (i) P(1) está correta e (ii) $[P(n) \implies P(n+1)]$.

Considere o item (i). Se n=1, então o lado esquerdo de (1.2) é igual a q. Por sua vez, o lado direito é igual a

$$\frac{q-q^2}{1-q} = q.$$

Logo, P(1) é verdadeira. Com relação ao item (ii) assuma que (1.2) é verdade. Some q^{n+1} de ambos lados dessa igualdade. Assim sendo,

$$\sum_{i=1}^{n+1} q^{i} = \frac{q - q^{n+1}}{1 - q} + q^{n+1} = \frac{q - q^{n+1}}{1 - q} + \frac{q^{n+1} - q^{n+2}}{1 - q} \implies \sum_{i=1}^{n+1} q^{i} = \frac{q - q^{n+2}}{1 - q}.$$
(1.3)

Desta forma, P(n) efetivamente implica P(n+1).

- Comentários sobre a prova do item (ii):
 - O primeiro passo consiste em escrever a igualdade (1.3) no seu rascunho.
 - * Idealmente (ressalto: idealmente), você terá uma noção precisa daquilo que você quer provar.
 - Faça alguma operação que o coloque na direção do resultado desejado.
 - O seu rascunho não faz parte da demonstração.