UFRJ Análise Matemática para Economistas P1 2025/0 Professor Alexandre B. Cunha Resolva 2 (duas) das 3 (três) questões.

- (1) Sejam $f: X \to Y$ e $g: Y \to Z$ duas funções sobrejetivas. Defina $h: X \to Z$ de forma que h(x) = g(f(x)). Mostre que h também é sobrejetiva.
- (2) Utilize o Princípio da Indução para provar que, para todo $n \in \mathbb{N}$,

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}.$$

(3) Seja X um conjunto superiormente limitado contido em \mathbb{R} . Defina o conjunto Y de forma que $Y = \{3x : x \in X\}$. Mostre que sup $Y = 3 \sup X$.

Respostas

(1) **Solução 1** Seja \bar{z} um elemento qualquer de Z. Como g é sobrejetiva, existe $\bar{y} \in Y$ tal $g(\bar{y}) = \bar{z}$. De forma similar, o fato de f ser sobrejetiva implica que existe $\bar{x} \in X$ tal $f(\bar{x}) = \bar{y}$. Podemos então concluir que $\bar{z} = g(f(\bar{x})) = h(\bar{x})$; ou seja, existe $\bar{x} \in X$ tal $h(\bar{x}) = \bar{z}$. Assim sendo, h é sobrejetiva.

Solução 2 Inicialmente, observe que h(X) = g(f(X)). O fato de que f é sobrejetiva implica que f(X) = Y. Logo, h(X) = g(Y). Porém, g também é sobrejetiva; desta forma, g(Y) = Z. Podemos então concluir que h(X) = Z. Esta última igualdade implica que a função h é sobrejetiva.

(2) Seja P(n) a afirmativa em análise. Como

$$\sum_{i=1}^{1} \frac{1}{i(i+1)} = \frac{1}{2} = \frac{1}{1+1},\tag{1}$$

P(1) é verdadeira. Resta mostrar que $[P(n) \Rightarrow P(n+1)]$. Assuma que P(n) se verifica e some o termo $[(n+1)(n+2)]^{-1}$ a ambos os lados da igualdade (1). Desta forma,

$$\sum_{i=1}^{n+1} \frac{1}{i(i+1)} = \frac{n}{n+1} + \frac{1}{(n+1)(n+2)} = \frac{n(n+2)+1}{(n+1)(n+2)} = \frac{n^2+2n+1}{(n+1)(n+2)} = \frac{(n+1)^2}{(n+1)(n+2)} = \frac{n+1}{n+2} \Longrightarrow \sum_{i=1}^{n+1} \frac{1}{i(i+1)} = \frac{n+1}{n+2}.$$

Logo, P(n+1) também se verifica.

(3) Inicialmente, observe que $x \leq \sup X$ para todo $x \in X$. Logo, $3x \leq 3 \sup X$ para todo $x \in X$. Concluímos então que $3 \sup X$ é uma cota superior para Y. Seja a um

número real tal que $a < 3 \sup X$. Desta forma, $(a/3) < \sup X$. Assim sendo, existe um número $x_a \in X$ tal que

 $\frac{a}{3} < x_a \implies a < 3x_a.$

Como $3x_a \in Y$, a não é uma cota superior de Y. Logo, $3 \sup X$ é a menor cota superior de Y; ou seja, $3 \sup X$ é o supremo de Y.