UFRJ Análise Matemática para Economistas P1 2020/0 Professor Alexandre B. Cunha Resolva 2 (duas) das 3 (três) questões.

(1) Sejam f uma função de X em Y e A e B dois subconjuntos de X. Mostre que

$$f(A) \cup f(B) \subseteq f(A \cup B)$$
.

(2) Utilize o Princípio da Indução para provar que

$$\sum_{i=1}^{n} \left(\frac{1}{3}\right)^{i} = \frac{1 - (1/3)^{n}}{2}$$

para todo $n \in \mathbb{N}$.

(3) Sejam A e B dois conjuntos limitados e não vazios contidos em \mathbb{R} . Mostre que

$$A \subseteq B \Rightarrow \inf B \le \inf A \le \sup A \le \sup B$$
.

Respostas

(1) Seja y qualquer elemento de $f(A) \cup f(B)$. Logo, (i) $y \in f(A)$ ou (ii) $y \in f(B)$. Se (i) se verifica, então existe $x \in A$ tal que f(x) = y. Como x também pertence a $A \cup B$, pode se concluir que $f(x) \in f(A \cup B)$. Tendo em vista que y = f(x), $y \in f(A \cup B)$. O mesmo raciocínio estabelece que se (ii) é verdadeira, então $y \in f(A \cup B)$. Desta forma, y certamente é um elemento de $f(A \cup B)$. Logo, $f(A) \cup f(B) \subseteq f(A \cup B)$.

(2) Seja P(n) a afirmativa em análise. Como

$$\left(\frac{1}{3}\right)^1 = \frac{1}{3} = \frac{2/3}{2} = \frac{1 - (1/3)^1}{2},$$

então P(1) é verdadeira. Resta mostrar que $[P(n) \Rightarrow P(n+1)]$. Assuma que P(n) se verifica e some $(1/3)^{n+1}$ a ambos os lados da igualdade. Desta forma,

$$\sum_{i=1}^{n+1} \left(\frac{1}{3}\right)^i = \frac{1 - (1/3)^n}{2} + \left(\frac{1}{3}\right)^{n+1} = \frac{1 - (1/3)^n + 2 \times (1/3)^{n+1}}{2} \Rightarrow \sum_{i=1}^{n+1} \left(\frac{1}{3}\right)^i = \frac{1 - (1/3)^n \left[1 - 2 \times (1/3)\right]}{2} = \frac{1 - (1/3)^n \left[1/3\right]}{2} = \frac{1 - (1/3)^{n+1}}{2}.$$

Logo, P(n+1) também se verifica.

(3) Seja x qualquer elemento de A. As definições de ínfimo e supremo implicam que inf $A \le x \le \sup A$. Assim sendo,

$$\inf A \le \sup A. \tag{1}$$

Adicionalmente, o fato de que $A \subseteq B$ implica que $x \in B$. Desta forma, $x \le \sup B$. Logo, $\sup B$ é uma cota superior de A. Como $\sup A$ é a menor cota superior de A,

$$\sup A \le \sup B. \tag{2}$$

Similarmente, inf $B \leq x$, o que implica que inf B é uma cota inferior de A. Tendo em vista que inf A é a maior cota inferior de A,

$$\inf B \le \inf A. \tag{3}$$

Combine as desigualdades (1), (2) e (3) para obter o resultado desejado.

UFRJ Análise Matemática para Economistas P2 2020/0 Professor Alexandre B. Cunha Resolva 2 (duas) das 3 (três) questões.

- (1) Seja (x_n) uma sequência de números reais. Mostre que se (x_n) é convergente, então (x_n) é uma sequência de Cauchy.
- (2) Seja (y_n) a sequência de números reais definida indutivamente por $y_{n+1} = \frac{1}{2}y_n + 4$ e $y_1 = 16$. Prove que (y_n) é convergente e calcule o seu limite.
- (3) Considere o problema de selecionar $\{c_t, k_{t+1}\}_{t=0}^{\infty}$ de forma a maximizar

$$\sum_{t=0}^{\infty} \beta^t u(c_t)$$

sujeito à restrição

$$c_t + k_{t+1} - (1 - \delta)k_t \le f(k_t) , k_0 = \bar{k} .$$

Ambas as funções u e f são estritamente crescentes, côncavas, diferenciáveis e satisfazem à condição de Inada. Monte a função de Lagrange e enuncie as condições de primeira ordem. Em seguida, caracterize a solução do problema (a sua caracterização não pode depender do multiplicador de Lagrange).

Respostas

(1) Seja ε um real positivo. Como (x_n) é convergente, existem um natural $K(\varepsilon/2)$ e um real x tal que

$$|x_n - x| < \varepsilon/2 \& |x_m - x| < \varepsilon/2$$

para todo $m, n \ge K(\varepsilon/2)$. Defina $H(\varepsilon) = K(\varepsilon/2)$ e suponha que $m, n \ge H(\varepsilon)$. Assim sendo,

$$|x_n - x_m| = |(x_n - x) + (x - x_m)| \le |x_n - x| + |x_m - x| < \varepsilon/2 + \varepsilon/2 = \varepsilon \Rightarrow |x_n - x_m| < \varepsilon.$$

(2) Seja P(n) a afirmativa

$$0 \le y_{n+1} \le y_n \le 16.$$

Utilizaremos o Princípio da Indução para mostrar que ela é verdadeira para todo $n \in \mathbb{N}$. Como $y_1 = 16$ e $y_2 = 12$, P(1) é verdadeira. Agora, assuma que P(n) se verifique. Logo,

$$0 \leq \frac{1}{2}y_{n+1} \leq \frac{1}{2}y_n \leq 8 \Rightarrow 4 \leq \frac{1}{2}y_{n+1} + 4 \leq \frac{1}{2}y_n + 4 \leq 12 \Rightarrow 4 \leq y_{n+2} \leq y_{n+1} \leq 12 \Rightarrow 0 \leq y_{n+2} \leq y_{n+1} \leq 16.$$

Tendo em vista que P(n) é verdadeira para todo $n \in \mathbb{N}$, concluímos que (y_n) é decrescente e limitada. Logo, ela é convergente. Por fim, denote o seu limite por y. Desta forma,

$$y = \frac{1}{2}y + 4 \Rightarrow \frac{1}{2}y = 4 \Rightarrow y = 8.$$

(3) A função de Lagrange (\mathcal{L}) é dada por

$$\mathcal{L} = \sum_{t=0}^{\infty} \left\{ \beta^t u(c_t) - \lambda_t [c_t + k_{t+1} - (1 - \delta)k_t - f(k_t)] \right\} .$$

As condições de primeira ordem são

$$\beta^t u'(c_t) = \lambda_t \ , \tag{1}$$

$$-\lambda_t + \lambda_{t+1}[1 - \delta + f'(k_{t+1})] = 0 , \qquad (2)$$

$$c_t + k_{t+1} - (1 - \delta)k_t = f(k_t) \tag{3}$$

e

$$\lim_{t \to \infty} \lambda_t k_{t+1} = 0 . (4)$$

No tocante a caracterização, observe que (2) é equivalente a

$$\frac{\lambda_{t+1}}{\lambda_t} = \frac{1}{1 - \delta + f'(k_{t+1})},$$

ao passo que (1) implica que

$$\frac{\lambda_{t+1}}{\lambda_t} = \frac{\beta u'(c_{t+1})}{u'(c_t)}.$$

Combine as duas últimas igualdades para concluir que

$$\frac{\beta u'(c_{t+1})}{u'(c_t)} = \frac{1}{1 - \delta + f'(k_{t+1})}. (5)$$

Adicionalmente, juntas (1) e (4) implicam que

$$\lim_{t \to \infty} \beta^t u'(c_t) k_{t+1} = 0 . \tag{6}$$

Dito isto, a solução é caracterizada pelas seguintes três igualdades: (3), (5) e (6).

UFRJ Análise Matemática para Economistas P1 2021/0 Professor Alexandre B. Cunha Resolva 2 (duas) das 3 (três) questões.

(1) Utilize o Princípio da Indução para provar que

$$\sum_{i=1}^{n} (2i-1) = n^2 .$$

(2) Sejam $f: X \to Y$ e $g: Y \to Z$ duas funções injetivas. Defina $h: X \to Z$ de forma que h(x) = g(f(x)). Mostre que h também é injetiva.

(3) Sejam $f:X\to\mathbb{R}$ e $g:X\to\mathbb{R}$ duas funções limitadas. Mostre que se $f(x)\leq g(x)$ para todo $x\in X,$ então

$$\sup_{x \in X} f(x) \le \sup_{x \in X} g(x) .$$

Respostas

(1) Seja P(n) a afirmativa em análise. Como

$$\sum_{i=1}^{1} (2i-1) = 1 = 1^{2},$$

P(1) é verdadeira.

Resta mostrar que $[P(n) \Rightarrow P(n+1)]$. Assuma que P(n) se verifica e some a expressão [2(n+1)-1] a ambos os lados da igualdade. Desta forma,

$$\left[\sum_{i=1}^{n} (2i-1)\right] + \left[2(n+1) - 1\right] = n^2 + \left[2(n+1) - 1\right] \Rightarrow$$

$$\sum_{i=1}^{n+1} (2i-1) = n^2 + 2n + 1 = (n+1)^2.$$

Logo, P(n+1) também se verifica.

(2) Sejam x_1 e x_2 elementos de X tais que $h(x_1) = h(x_2)$. Tendo em vista a definição de h, podemos concluir que $g(f(x_1)) = g(f(x_2))$. Com g é injetiva, $f(x_1) = f(x_2)$. Por sua vez, o fato de que f também é injetiva implica que $x_1 = x_2$. Assim sendo, h é injetiva.

(3) A definição de supremo implica que

$$g(x) \le \sup_{y \in X} g(y), \, \forall x \in X$$
.

Combine a desigualdade acima com a hipótese de que $f(x) \leq g(x)$ para todo $x \in X$ para concluir que

$$f(x) \le \sup_{y \in X} g(y), \, \forall x \in X$$
.

Desta forma, $\sup_{y \in X} g(y)$ é uma cota superior para f. Tendo em vista que $\sup_{x \in X} f(x)$ é a menor cota superior de f, concluímos então que

$$\sup_{x \in X} f(x) \le \sup_{x \in X} g(x) .$$

UFRJ Análise Matemática para Economistas P2 2021/0 Professor Alexandre B. Cunha Resolva 2 (duas) das 3 (três) questões.

- (1) Sejam (x_n) uma sequência de números reais, a um número real positivo e (y_n) a sequência definida por $y_n = ax_n$. Mostre que se $\lim(x_n) = x$, então $\lim(y_n) = ax$.
- (2) Considere a sequência de números reais definida recursivamente por $z_1 = 80$ e

$$z_{n+1} = \frac{1}{4}z_n + 12 \ .$$

Prove que (z_n) é convergente e calcule o seu limite.

(3) Seja (x_n) a sequência definida por

$$x_n = n^2 \left(\frac{1}{3}\right)^n.$$

Mostre que $\lim(x_n) = 0$.

Respostas

(1) Seja ε um número positivo qualquer. Como $\lim(x_n) = x$, existe um número natural $K(\varepsilon)$ tal que

$$n \ge K(\varepsilon) \Rightarrow |x_n - x| < \frac{\varepsilon}{a} \Rightarrow a|x_n - x| < \varepsilon \Rightarrow |ax_n - ax| < \varepsilon \Rightarrow |y_n - ax| < \varepsilon$$
.

Assim sendo, $\lim(y_n) = ax$.

(2) Seja P(n) a afirmativa

$$0 \le z_{n+1} \le z_n \le 80.$$

Utilizaremos o Princípio da Indução para mostrar que ela é verdadeira para todo $n \in \mathbb{N}$. Como $z_1 = 80$ e $z_2 = 32$, P(1) é verdadeira. Agora, assuma que P(n) se verifique. Logo,

$$0 \leq \frac{1}{4}z_{n+1} \leq \frac{1}{4}z_n \leq 20 \Rightarrow 12 \leq \frac{1}{4}z_{n+1} + 12 \leq \frac{1}{4}z_n + 12 \leq 32 \Rightarrow 12 \leq z_{n+2} \leq z_{n+1} \leq 32 \Rightarrow 0 \leq z_{n+2} \leq z_{n+1} \leq 80.$$

Tendo em vista que P(n) é verdadeira para todo $n \in \mathbb{N}$, concluímos que (z_n) é decrescente e limitada. Logo, ela é convergente. Por fim, denote o seu limite por z. Desta forma,

$$z = \frac{1}{4}z + 12 \Rightarrow \frac{3}{4}z = 12 \Rightarrow z = 16.$$

(3) Inicialmente, observe que

$$\frac{x_{n+1}}{x_n} = \frac{(n+1)^2 \left(\frac{1}{3}\right)^{n+1}}{n^2 \left(\frac{1}{3}\right)^n} = \left(\frac{n^2 + 2n + 1}{n^2}\right) \frac{1}{3} = \left(1 + \frac{2}{n} + \frac{1}{n^2}\right) \frac{1}{3}.$$

Como $x_n > 0$ e

$$\lim\left(1+\frac{2}{n}+\frac{1}{n^2}\right)=1,$$

podemos concluir que

$$\lim \left(\frac{x_{n+1}}{x_n}\right) = \frac{1}{3} < 1 \Rightarrow \lim(x_n) = 0.$$

UFRJ Análise Matemática para Economistas P1 2022/0 Professor Alexandre B. Cunha Resolva 2 (duas) das 3 (três) questões.

(1) Sejam f uma função de X em Y e A e B dois subconjuntos de Y. Mostre que

$$f^{-1}(A \cup B) \subseteq f^{-1}(A) \cup f^{-1}(B)$$
.

(2) Utilize o Princípio da Indução para provar que

$$1+3+9+\ldots+3^{n-1}=\frac{3^n-1}{2}$$
.

para todo $n \in \mathbb{N}$.

(3) Seja X o conjunto dado por $\{x \in \mathbb{R} : -5 \le x < 12\}$. Mostre que sup X = 12.

Respostas

(1) Seja x um elemento genérico de $f^{-1}(A \cup B)$. Logo, $f(x) \in A \cup B$. Assim sendo, (i) $f(x) \in A$ ou (ii) $f(x) \in B$. Se (i) se verifica, então $x \in f^{-1}(A)$. Similarmente, se (ii) é satisfeita, então $x \in f^{-1}(B)$. Como ambos $f^{-1}(A)$ e $f^{-1}(B)$ são subconjuntos de $f^{-1}(A) \cup f^{-1}(B)$, concluímos que x pertence a esse último conjunto. Desta forma, $f^{-1}(A \cup B) \subset f^{-1}(A) \cup f^{-1}(B)$.

(2) Seja P(n) a afirmativa em análise. Como

$$1 = \frac{3^1 - 1}{2},$$

P(1) é verdadeira. Resta mostrar que $[P(n) \implies P(n+1)]$. Assuma que P(n) se verifica e some a expressão 3^n a ambos os lados da igualdade. Desta forma,

$$1+3+9+\ldots+3^{n-1}+3^n=\frac{3^n-1}{2}+3^n=\frac{3^n-1+2\times 3^n}{2}=\frac{3^n(1+2)-1}{2}\implies \\ 1+3+9+\ldots+3^n=\frac{3^{n+1}-1}{2}.$$

Logo, P(n+1) também se verifica.

(3) Tendo em vista a definição de X, 12 é um cota superior para o referido conjunto. Seja v um número real tal que v < 12. Se $v \le 10$, então $v < 11 \in X$; logo, v não é uma cota superior de X. Suponha agora que v > 10. Considere o número x_v dado por

$$x_v = v + \frac{12 - v}{2}.$$

Observe que

$$x_v \ge 12 \implies v + \frac{12 - v}{2}v \ge 12 \implies 2v + 12 - v \ge 24 \implies v \ge 12.$$

Tendo em vista que v < 12, concluímos que $x_v < 12$. Como 12 - v > 0, $x_v > v \ge -5$. Desta forma, $x_v \in X$. Consequentemente, v não é uma cota superior de X. Assim sendo, 12 é a menor cota superior de X, o que implica que sup X = 12.

UFRJ Análise Matemática para Economistas P2 2022/0 Professor Alexandre B. Cunha Resolva 2 (duas) das 3 (três) questões.

- (1) Sejam (x_n) e (y_n) duas sequências convergentes e (z_n) a sequência definida por $z_n = x_n + y_n$. Mostre que $\lim(z_n) = \lim(x_n) + \lim(y_n)$.
- (2) Seja (x_n) a sequência definida por

$$x_n = (n+2)a^n ,$$

onde $a \in (0,1)$. Mostre que $\lim(x_n) = 0$.

(3) Seja (y_n) a sequência de números reais definida indutivamente por $y_1 = 20$ e

$$y_{n+1} = \frac{1}{4}y_n + 3 .$$

Prove que (y_n) é convergente e calcule o seu limite.

Respostas

(1) Denote $\lim(x_n)$ e $\lim(y_n)$ por, respectivamente, x e y. Seja ε um número positivo qualquer. A definição de limite implica que existem números inteiros $K_x(\varepsilon/2)$ e $K_y(\varepsilon/2)$ tais que

$$n \ge K_x(\varepsilon/2) \Rightarrow |x_n - x| < \varepsilon/2$$

е

$$n \ge K_y(\varepsilon/2) \Rightarrow |y_n - y| < \varepsilon/2.$$

Desta forma,

$$n \ge \max\{K_x(\varepsilon/2), K_y(\varepsilon/2)\} \Rightarrow |x_n - x| + |y_n - y| < \varepsilon.$$

Defina $K(\varepsilon) = \max\{K_x(\varepsilon/2), K_y(\varepsilon/2)\}$. Utilize a desigualdade triangular para concluir que

$$n \ge K(\varepsilon) \Rightarrow |(x_n + y_n) - (x + y)| < \varepsilon \Rightarrow |z_n - (x + y)| < \varepsilon$$
.

(2) Inicialmente, observe que $x_n > 0$ para todo $n \in \mathbb{N}$. Adicionalmente,

$$\frac{x_{n+1}}{x_n} = \frac{(n+3)a^{n+1}}{(n+2)a^n} = \frac{n+3}{n+2}a = \frac{1+\frac{3}{n}}{1+\frac{2}{n}}a.$$

Como

$$\lim\left(1+\frac{3}{n}\right) = \lim\left(1+\frac{2}{n}\right) = 1,$$

podemos concluir que

$$\lim \left(\frac{x_{n+1}}{x_n}\right) = a.$$

Tendo em vista que $a \in (0,1)$, $\lim(x_n) = 0$.

(3) Seja P(n) a afirmativa

$$0 < y_{n+1} < y_n < 20.$$

Utilizaremos o Princípio da Indução para mostrar que ela é verdadeira para todo $n \in \mathbb{N}$. Como $y_1 = 20$ e $y_2 = 8$, P(1) é verdadeira. Agora, assuma que P(n) se verifique. Logo,

$$0 \leq \frac{1}{4}y_{n+1} \leq \frac{1}{4}y_n \leq 5 \Rightarrow 3 \leq \frac{1}{4}y_{n+1} + 3 \leq \frac{1}{4}y_n + 3 \leq 8 \Rightarrow 3 \leq y_{n+2} \leq y_{n+1} \leq 8 \Rightarrow 0 \leq y_{n+2} \leq y_{n+1} \leq 20.$$

Tendo em vista que P(n) é verdadeira para todo $n \in \mathbb{N}$, a sequência (y_n) é decrescente e limitada. Logo, ela é convergente. Denote o seu limite por y. Desta forma,

$$y = \frac{1}{4}y + 3 \Rightarrow 4y = y + 12 \Rightarrow 3y = 12 \Rightarrow y = 4.$$

UFRJ Análise Matemática para Economistas P1 2023/0 Professor Alexandre B. Cunha Resolva 2 (duas) das 3 (três) questões.

(1) Utilize o Princípio da Indução para provar que, para todo $n \in \mathbb{N}$,

$$4 + 8 + 12 + \dots + 4n = 2n(n+1).$$

(2) Sejam A e B dois conjuntos limitados e não vazios contidos em \mathbb{R} . Mostre que

$$\inf(A \cup B) = \min \left\{ \inf A, \inf B \right\}.$$

(3) Sejam $f: X \to Y$ e $g: Y \to Z$ duas funções sobrejetivas. Defina $h: X \to Z$ de forma que h(x) = g(f(x)). Mostre que h também é sobrejetiva.

Respostas

(1) Seja P(n) a afirmativa em análise. Tendo em vista que

$$4 = 2 \times 1(1+1),$$

a afirmativa P(1) está correta. Logo, resta mostrar que $[P(n) \Rightarrow P(n+1)]$. Assuma que P(n) seja verdade e some 4(n+1) a ambos os lados da igualdade. Desta forma,

$$4 + 8 + 12 + \dots + 4n + 4(n+1) = 2n(n+1) + 4(n+1).$$

Como

$$2n(n+1) + 4(n+1) = (2n+4)(n+1) = 2(n+2)(n+1),$$

podemos concluir que

$$4 + 8 + 12 + \dots + 4(n+1) = 2(n+1)(n+2).$$

Assim sendo, P(n+1) também se verifica.

(2) Para simplificar a notação, denote min {inf A, inf B} por c. Seja x qualquer elemento de $A \cup B$. Se $x \in A$, então $x \ge \inf A \ge c$; se $x \in B$, então $x \ge \inf B \ge c$. Concluímos então que $x \ge c$. Logo, c é uma cota inferior de $A \cup B$.

Para encerrar, é preciso mostrar que c é a maior cota inferior de $A \cup B$. Sem perda de generalidade, assuma que inf $A \leq \inf B$. Seja y um número qualquer maior do c. Como $c = \inf A$, então existe $s_y \in A$ tal que $s_y < y$. Tendo em vista que $s_y \in A \cup B$, concluímos que y não é uma cota inferior de $A \cup B$. Assim sendo, c é a maior cota inferior de $A \cup B$.

(3) **Solução 1** Seja \bar{z} um elemento qualquer de Z. Como g é sobrejetiva, existe $\bar{y} \in Y$ tal $g(\bar{y}) = \bar{z}$. De forma similar, o fato de f ser sobrejetiva implica que existe $\bar{x} \in X$ tal $f(\bar{x}) = \bar{y}$. Podemos então concluir que $\bar{z} = g(f(\bar{x})) = h(\bar{x})$; ou seja, existe $\bar{x} \in X$ tal $h(\bar{x}) = \bar{z}$. Assim sendo, h é sobrejetiva.

Solução 2 Inicialmente, observe que h(X) = g(f(X)). O fato de que f é sobrejetiva implica que f(X) = Y. Logo, h(X) = g(Y). Porém, g também é sobrejetiva; desta forma, g(Y) = Z. Podemos então concluir que h(X) = Z. Esta última igualdade implica que a função h é sobrejetiva.

UFRJ Análise Matemática para Economistas

P2 2023/0

Professor Alexandre B. Cunha

Resolva 2 (duas) das 3 (três) questões.

- (1) Considere a sequência de números reais definida por $x_n = 2/(n+1)$. Prove que (x_n) é uma sequência de Cauchy utilizando a definição desse conceito.
- (2) Seja (y_n) uma sequência de números reais. Mostre que se (y_n) é convergente, então ela é limitada.
- (3) Considere a sequência de números reais definida recursivamente por $z_1=6$ e

$$z_{n+1} = \frac{1}{3}z_n + \frac{2}{3} \ .$$

Prove que (z_n) é convergente e calcule o seu limite.

Respostas

(1) Solução 1 Seja $H(\varepsilon)$ um número natural maior que $2/\varepsilon$. Observe que se $m>n\geq H(\varepsilon)$, então

$$n > \frac{2}{\varepsilon} \Rightarrow n+1 > \frac{2}{\varepsilon} \Rightarrow \frac{2}{n+1} < \varepsilon \Rightarrow 0 < \frac{2}{n+1} - \frac{2}{m+1} < \varepsilon \Rightarrow |x_n - x_m| < \varepsilon$$
.

Solução 2 Seja $H(\varepsilon)$ um número natural maior que $4/\varepsilon$. Observe que

$$n \geq H(\varepsilon) \Rightarrow n > \frac{4}{\varepsilon} \Rightarrow n+1 > \frac{4}{\varepsilon} \Rightarrow \frac{2}{n+1} < \frac{\varepsilon}{2} \Rightarrow \left| \frac{2}{n+1} \right| < \frac{\varepsilon}{2}.$$

De forma similar,

$$m \ge H(\varepsilon) \Rightarrow \left| -\frac{2}{m+1} \right| < \frac{\varepsilon}{2}.$$

Assim sendo, se $n \ge H(\varepsilon)$ e $m \ge H(\varepsilon)$, então

$$|x_n - x_m| = \left| \frac{2}{n+1} - \frac{2}{m+1} \right| \le \left| \frac{2}{n+1} \right| + \left| -\frac{2}{m+1} \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

(2) Denote o limite de (y_n) por y. Logo, existe um número natural K tal que se $n \geq K$, então $|y_n - y| < 1$. Como

$$|y_n - y| < 1 \Rightarrow |y_n - y| + |y| < 1 + |y| \Rightarrow |y_n| < 1 + |y|$$
,

sabemos que $|y_n| < 1 + |y|$ para todo $n \ge K$. Defina M de acordo com

$$M = \max\{|y_1|, |y_2|, ..., |y_{K-1}|, 1 + |y|\}.$$

Por fim, observe que $|y_n| \leq M$ para todo $n \in \mathbb{N}$.

(3) Seja P(n) a afirmativa

$$0 \le z_{n+1} \le z_n \le 6.$$

Utilizaremos o Princípio da Indução para mostrar que ela é verdadeira para todo $n \in \mathbb{N}$. Como $z_1 = 6$ e $z_2 = 8/3$, P(1) é verdadeira. Agora, assuma que P(n) se verifique. Logo,

$$0 \leq \frac{1}{3}z_{n+1} \leq \frac{1}{3}z_n \leq 2 \Rightarrow \frac{2}{3} \leq \frac{1}{3}z_{n+1} + \frac{2}{3} \leq \frac{1}{3}z_n + \frac{2}{3} \leq 2 + \frac{2}{3} \Rightarrow \frac{2}{3} \leq z_{n+2} \leq z_{n+1} \leq 2 + \frac{2}{3} \Rightarrow 0 \leq z_{n+2} \leq z_{n+1} \leq 6.$$

Tendo em vista que P(n) é verdadeira para todo $n \in \mathbb{N}$, a sequência (z_n) é decrescente e limitada. Logo, ela é convergente. Denote o seu limite por z. Desta forma,

$$z = \frac{1}{3}z + \frac{2}{3} \Rightarrow 3z = z + 2 \Rightarrow 2z = 2 \Rightarrow z = 1.$$

UFRJ Análise Matemática para Economistas P1 2024/0 Professor Alexandre B. Cunha Resolva 2 (duas) das 3 (três) questões.

(1) Utilize o Princípio da Indução para provar que, para todo $n \in \mathbb{N}$,

$$\sum_{i=1}^{n} (2i+6) = n(n+7) .$$

(2) Sejam A e B dois conjuntos limitados e não vazios contidos em \mathbb{R} . Mostre que

$$A \subseteq B \Rightarrow \inf B \le \inf A \le \sup A \le \sup B$$
.

(3) Sejam X e Y dois conjuntos tais que cada um deles possui n elementos, onde $n \in \mathbb{N}$. Mostre que existe uma bijeção de X em Y.

Respostas

(1) Seja P(n) a afirmativa em análise. Como

$$\sum_{i=1}^{1} (2i+6) = 8 = 1 \times (1+7),$$

P(1) é verdadeira.

Resta mostrar que $[P(n) \Rightarrow P(n+1)]$. Assuma que P(n) se verifica e some a expressão [2(n+1)+6] a ambos os lados da igualdade. Desta forma,

$$\left[\sum_{i=1}^{n} (2i+6)\right] + \left[2(n+1)+6\right] = n(n+7) + \left[2(n+1)+6\right] \Rightarrow$$

$$\sum_{i=1}^{n+1} (2i+6) = n^2 + 7n + \left[2n+8\right] = n^2 + 9n + 8. \tag{1}$$

Ademais,

$$n^{2} + 9n + 8 = (n+1)(n+8) = (n+1)[(n+1) + 7].$$

Assim sendo,

$$\sum_{i=1}^{n+1} (2i+6) = (n+1)[(n+1)+7]$$

Logo, P(n+1) também se verifica.

(2) Seja x qualquer elemento de A. As definições de ínfimo e supremo implicam que inf $A \le x \le \sup A$. Assim sendo,

$$\inf A \le \sup A. \tag{2}$$

Adicionalmente, o fato de que $A \subseteq B$ implica que $x \in B$. Desta forma, $x \leq \sup B$. Logo, $\sup B$ é uma cota superior de A. Como $\sup A$ é a menor cota superior de A,

$$\sup A \le \sup B. \tag{3}$$

Similarmente, inf $B \leq x$, o que implica que inf B é uma cota inferior de A. Tendo em vista que inf A é a maior cota inferior de A,

$$\inf B \le \inf A.$$
 (4)

Combine as desigualdades (2), (3) e (4) para obter o resultado desejado.

(3) Como ambos X e Y têm n elementos, existem bijeções $f: \mathbb{N}_n \to X$ e $g: \mathbb{N}_n \to Y$. Ademais, o fato de f ser um bijeção implica que a função inversa $f^{-1}: X \to \mathbb{N}_n$ está bem definida e também é uma bijeção. Considere agora a função $h: X \to Y$, onde $h(x) = g(f^{-1}(x))$. Como ambas g e f^{-1} são bijeções, podemos concluir que h também é uma bijeção.

UFRJ Análise Matemática para Economistas P2 2024/0 Professor Alexandre B. Cunha Resolva 2 (duas) das 3 (três) questões.

(1) Considere a sequência de números reais definida recursivamente por $x_1=4$ e

$$x_{n+1} = \frac{1}{2}x_n + 10 \ .$$

Prove que (x_n) é convergente e calcule o seu limite.

(2) Sejam (x_n) e (y_n) duas sequências de números reais tais que $x_n \ge 0$ e $y_n \ge 0$ para todo $n \in \mathbb{N}$. Mostre que se $\lim(x_n) = 0$ e (y_n) é limitada, então $\lim(x_ny_n) = 0$.

(3) Considere o problema de selecionar $\{c_t, k_{t+1}\}_{t=0}^{\infty}$ de forma a maximizar

$$\sum_{t=0}^{\infty} \beta^t U(c_t)$$

sujeito à restrição

$$c_t + k_{t+1} - (1 - \delta)k_t \le f(k_t) , k_0 = \bar{k} .$$

Ambas as funções U e f são estritamente crescentes, côncavas, diferenciáveis e satisfazem à condição de Inada. Monte a função de Lagrange e enuncie as condições de primeira ordem. Em seguida, caracterize a solução do problema (a sua caracterização não pode depender do multiplicador de Lagrange).

Respostas

(1) Seja P(n) a afirmativa

$$0 \le x_n \le x_{n+1} \le 20.$$

Utilizaremos o Princípio da Indução para mostrar que ela é verdadeira para todo $n \in \mathbb{N}$. Como $x_1 = 4$ e $x_2 = 12$, P(1) é verdadeira. Agora, assuma que P(n) se verifique. Logo,

$$0 \leq \frac{1}{2}x_n \leq \frac{1}{2}x_{n+1} \leq 10 \Rightarrow 10 \leq \frac{1}{2}x_n + 10 \leq \frac{1}{2}x_{n+1} + 10 \leq 20 \Rightarrow 10 \leq x_{n+1} \leq x_{n+2} \leq 20 \Rightarrow 0 \leq x_{n+1} \leq x_{n+2} \leq 20.$$

Tendo em vista que P(n) é verdadeira para todo $n \in \mathbb{N}$, concluímos que (x_n) é crescente e limitada. Logo, ela é convergente. Por fim, denote o seu limite por x. Desta forma,

$$x = \frac{1}{2}x + 10 \Rightarrow \frac{1}{2}x = 10 \Rightarrow x = 20.$$

(2) Solução 1 Como $y_n \ge 0$ para todo $n \in \mathbb{N}$ e a sequência (y_n) é limitada, existe um

real positivo M tal que $0 \le y_n \le M$ para todo $n \in \mathbb{N}$. Desta forma,

$$0 \le x_n y_n \le M x_n$$

para todo $n \in \mathbb{N}$. Agora, observe que $\lim(Mx_n) = 0$. Assim sendo, é possível aplicar o teorema do sanduíche para concluir que $\lim(x_ny_n) = 0$.

Solução 2 Como $y_n \ge 0$ para todo $n \in \mathbb{N}$ e a sequência (y_n) é limitada, existe um real positivo M tal que $0 \le y_n \le M$ para todo $n \in \mathbb{N}$. Desta forma,

$$0 < x_n y_n < M x_n$$

para todo $n \in \mathbb{N}$. Seja ε um número positivo qualquer. Como $\lim(x_n) = 0$, existe um número natural $K(\varepsilon)$ tal que

$$n \ge K(\varepsilon) \implies |x_n - 0| < \frac{\varepsilon}{M} \implies 0 \le M|x_n - 0| = Mx_n < \varepsilon$$
.

Assim sendo,

$$0 \le x_n y_n < \varepsilon \implies |x_n y_n - 0| < \varepsilon$$

para todo $n \geq K(\varepsilon)$. Logo, $\lim(x_n y_n) = 0$.

(3) A função de Lagrange (\mathcal{L}) é dada por

$$\mathcal{L} = \sum_{t=0}^{\infty} \left\{ \beta^t U(c_t) - \lambda_t [c_t + k_{t+1} - (1 - \delta)k_t - f(k_t)] \right\} .$$

As condições de primeira ordem são

$$\beta^t U'(c_t) = \lambda_t \ , \tag{1}$$

$$-\lambda_t + \lambda_{t+1}[1 - \delta + f'(k_{t+1})] = 0 , \qquad (2)$$

$$c_t + k_{t+1} - (1 - \delta)k_t = f(k_t) \tag{3}$$

e

$$\lim_{t \to \infty} \lambda_t k_{t+1} = 0 \ . \tag{4}$$

No tocante a caracterização, observe que (2) é equivalente a

$$\frac{\lambda_{t+1}}{\lambda_t} = \frac{1}{1 - \delta + f'(k_{t+1})},$$

ao passo que (1) implica que

$$\frac{\lambda_{t+1}}{\lambda_t} = \frac{\beta U'(c_{t+1})}{U'(c_t)}.$$

Combine as duas últimas igualdades para concluir que

$$\frac{\beta U'(c_{t+1})}{U'(c_t)} = \frac{1}{1 - \delta + f'(k_{t+1})}. (5)$$

Adicionalmente, juntas (1) e (4) implicam que

$$\lim_{t \to \infty} \beta^t U'(c_t) k_{t+1} = 0 .$$
(6)

Dito isto, a solução é caracterizada pelas seguintes três igualdades: (3), (5) e (6).